【題目】如圖,直線y=x+3與x軸交于點A,與y軸交于點B,點C與點A關(guān)于y軸對稱.
(1)求直線BC的函數(shù)表達(dá)式;
(2)設(shè)點M是x軸上的一個動點,過點M作y軸的平行線,交直線AB于點P,交直線BC于點Q,連接BM.
①若∠MBC=90°,求點P的坐標(biāo);
②若△PQB的面積為,請直接寫出點M的坐標(biāo).
【答案】(1)y=﹣x+3;(2)①P(﹣,0);②M(,0)或(﹣,0).
【解析】
(1)先根據(jù)坐標(biāo)軸上點的特點求出A,B的坐標(biāo),進(jìn)而求出點C坐標(biāo),最后用待定系數(shù)法即可得出結(jié)論;
(2)①設(shè)出點M的坐標(biāo),利用勾股定理求出BC2=45,BM2=OM2+OB2=m2+9,MC2=(6﹣m)2,最后用勾股定理建立方程求解,即可得出結(jié)論;
②設(shè)出點M的坐標(biāo),進(jìn)而得出點P,Q坐標(biāo),即:得出PQ,最后用面積公式即可得出結(jié)論.
解:(1)對于y=x+3,令x=0,y=3,
∴B(0,3),
令y=0,
∴x+3=0,
∴x=﹣6,
∴A(﹣6,0),
∵點C與點A關(guān)于y軸對稱,
∴C(6,0),
設(shè)直線BC的解析式為y=kx+b,
∴,
∴,
∴直線BC的解析式為y=﹣x+3;
(2)①設(shè)點M(m,0),
∴P(m, m+3),
∵B(0,3),C(6,0),
∴BC2=45,BM2=OM2+OB2=m2+9,MC2=(6﹣m)2,
∵∠MBC=90°,
∴△BMC是直角三角形,
∴BM2+BC2=MC2,
∴m2+9+45=(6﹣m)2,
∴m=﹣,∴P(﹣,0);
②設(shè)點M(n,0),
∵點P在直線AB:y=x+3上,
∴P(n, n+3),
∵點Q在直線BC:y=﹣x+3上,
∴Q(n,﹣ n+3),
∴PQ=|n+3﹣(﹣n+3)|=|n|,
∵△PQB的面積為,
∴S△PQB=|n||n|=n2=,
∴n=±,
∴M(,0)或(﹣,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖 1,在△ABC 中,∠ACB=90°,BC=AC,點 D 在 AB 上,DE⊥AB交 BC 于 E,點 F 是 AE 的中點
(1) 寫出線段 FD 與線段 FC 的關(guān)系并證明;
(2) 如圖 2,將△BDE 繞點 B 逆時針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段 FD 與線段 FC 的關(guān)系是否變化,寫出你的結(jié)論并證明;
(3) 將△BDE 繞點 B 逆時針旋轉(zhuǎn)一周,如果 BC=4,BE=2,直接寫出線段 BF 的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知∠BDC=∠EFD,∠AED=∠ACB.
(1)試判斷∠DEF與∠B的大小關(guān)系,并說明理由;
(2)若D、E、F分別是AB、AC、CD邊上的中點,S△DEF=4,S△ABC=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵市民節(jié)約用水,某市水費實行分段計費制,每戶每月用水量在規(guī)定用量及以下的部分收費標(biāo)準(zhǔn)相同,超出規(guī)定用量的部分收費標(biāo)準(zhǔn)相同.例如:若規(guī)定用量為10噸,每月用水量不超過10噸按1.5元/噸收費,超出10噸的部分按2元/噸收費,則某戶居民一個月用水8噸,則應(yīng)繳水費:8×1.5=12(元);某戶居民一個月用水13噸,則應(yīng)繳水費:10×1.5+(13﹣10)×2=21(元).
表是小明家1至4月份用水量和繳納水費情況,根據(jù)表格提供的數(shù)據(jù),回答:
月份 | 一 | 二 | 三 | 四 |
用水量(噸) | 6 | 7 | 12 | 15 |
水費(元) | 12 | 14 | 28 | 37 |
(1)該市規(guī)定用水量為 噸,規(guī)定用量內(nèi)的收費標(biāo)準(zhǔn)是 元/噸,超過部分的收費標(biāo)準(zhǔn)是 元/噸.
(2)若小明家五月份用水20噸,則應(yīng)繳水費 元.
(3)若小明家六月份應(yīng)繳水費46元,則六月份他們家的用水量是多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)用4個全等的直角三角形拼成如圖所示“弦圖”.Rt△ABC中,∠ACB=90°,若AC=b,BC=a,請你利用這個圖形解決下列問題:
(1)試說明a2+b2=c2;
(2)如果大正方形的面積是6,小正方形的面積是2,求(a+b)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,矩形 ABCO,B點坐標(biāo)為(4,3),拋物線y=
經(jīng)過矩形ABCO的頂點 B 、C ,D為BC的中點,直線 AD y軸交 E點,與拋物線 交于第四象限的 F點.
(1)求該拋物線解析式與F點坐標(biāo);
(2)如圖2,動點P從點C出發(fā),沿線段 CB以每秒1個單位長度的速度向終點B運動;同時,動點M從 A出發(fā),沿線 AE以每秒 個單位長度的速度向終點E運動.過點P作PH ⊥OA,垂足為H ,連接 MP ,MH .設(shè)點 P 的運動時間 t秒.
①問EP+ PH+ HF是否有最小值?如果有,求出t的值;如果沒有,請說明理由.
②若△PMH是等腰三角形,請直接寫出此時t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】推理填空
如圖:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,求證:CE∥DF.請完成下面的解題過程.
解:∵BD平分∠ABC,CE平分∠ACB ( 已知 )
∴∠DBC=∠_____,∠ECB=∠_____ ( 角平分線的定義)
又∵∠ABC=∠ACB (已知)
∴∠_____=∠_____.
又∵∠_____=∠_____ (已知)
∴∠F=∠_____
∴CE∥DF_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D,E分別在AB,AC上,DE∥BC,F是AD上一點,FE的延長線交BC的延長線于點G.求證:
(1)∠EGH>∠ADE;
(2)∠EGH=∠ADE+∠A+∠AEF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com