【題目】直線l:y=mx﹣m+1(m為常數(shù),且m≠0)與坐標(biāo)軸交于A、B兩點(diǎn),若△AOB(O是原點(diǎn))的面積恰為2,則符合要求的直線l有( )
A.1條
B.2條
C.3條
D.4條
【答案】C
【解析】解:當(dāng)x=0時(shí),y=mx﹣m+1=1﹣m,
∴直線l與y軸的交點(diǎn)A的坐標(biāo)為(0,1﹣m);
當(dāng)y=mx﹣m+1=0時(shí),x=1﹣ ,
∴直線l與x軸的交點(diǎn)B的坐標(biāo)為(1﹣ ,0).
∵△AOB(O是原點(diǎn))的面積恰為2,
∴ |1﹣m||1﹣ |=2.
當(dāng)m<0時(shí),有m2+2m+1=0,
解得:m=﹣1;
當(dāng)0<m≤1時(shí),有m2﹣6m+1=0,
解得:m=3﹣2 或m=3+2 (舍去);
當(dāng)m>1時(shí),有m2﹣6m+1=0,
解得:m=3+2 或m=3﹣2 (舍去).
∴m的值有3個(gè),即符合要求的直線有3個(gè).
所以答案是:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A(a,b)、B(c,d)、C(7,0),且
(1)如果a1,d2,
①求A,B兩點(diǎn)的坐標(biāo);
②求線段AB與y軸交點(diǎn)N的坐標(biāo),并求出△AOB的面積;
(2)如果b1,且△AOB與△ABC面積和為9,求a的值或取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題:①若則②若則③對(duì)頂角相等;④等腰三角形的兩底角相等.其中原命題和逆命題均為真命題的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家電商場(chǎng)計(jì)劃用9萬元從生產(chǎn)廠家購(gòu)進(jìn)50臺(tái)電視機(jī),已知該廠家生產(chǎn)3種不同型號(hào)的電視機(jī),出廠價(jià)分別為A種每臺(tái)1500元,B種每臺(tái)2100元,C種每臺(tái)2500元.
(1)若家電商場(chǎng)同時(shí)購(gòu)進(jìn)兩種不同型號(hào)的電視機(jī)共50臺(tái),用去9萬元,請(qǐng)你計(jì)算一下商場(chǎng)有哪幾種進(jìn)貨方案?
(2)若商場(chǎng)銷售一臺(tái)A種電視機(jī)可獲利150元,銷售一臺(tái)B種電視機(jī)可獲利200元,銷售一臺(tái)C種電視機(jī)可獲利250元,在同時(shí)購(gòu)進(jìn)兩種不同型號(hào)的電視機(jī)方案中,為了使銷售時(shí)獲利最多,應(yīng)選擇哪種方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們已經(jīng)知道,有一個(gè)內(nèi)角是直角的三角形是直角三角形.其中直角所在的兩條邊叫直角邊,直角所對(duì)的邊叫斜邊(如圖①所示).數(shù)學(xué)家已發(fā)現(xiàn)在一個(gè)直角三角形中,兩個(gè)直角邊邊長(zhǎng)的平方和等于斜邊長(zhǎng)的平方.如果設(shè)直角三角形的兩條直角邊長(zhǎng)度分別是和,斜邊長(zhǎng)度是,那么可以用數(shù)學(xué)語(yǔ)言表達(dá):.
(1)在圖②,若,,則 ;
(2)觀察圖②,利用面積與代數(shù)恒等式的關(guān)系,試說明的正確性.其中兩個(gè)相同的直角三角形邊AE、EB在一條直線上;
(3)如圖③所示,折疊長(zhǎng)方形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB=8,BC=10,利用上面的結(jié)論求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)發(fā)現(xiàn)問題:如圖①平行四邊形AB、CD的對(duì)角線相交于點(diǎn)O,DE∥AC,CE∥BD,可知:四邊形OCED是什么形(不需要證明).
(2)類比探究:如圖②矩形ABCD的對(duì)角線相交于點(diǎn)O,DE∥AC,CE∥BD,四邊形OCED是什么形,請(qǐng)說明理由;
(3)拓展應(yīng)用:如圖③,菱形ABCD的對(duì)角線相交于點(diǎn)O,∠ABC=60°,BC=4,DE∥AC交BC的延長(zhǎng)線于點(diǎn)F,CE∥BD求四邊形ABFD的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)正三角形和一副三角板(分別含30°和45°)擺放成如圖所示的位置,且AB∥CD.則∠1+∠2=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,過點(diǎn)C作CE∥BD,過點(diǎn)D作DE∥AC,CE與DE相交于點(diǎn)E,若AB=10,AC=12,求四邊形CODE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連結(jié)AG、CF.
(1)求證:①△ABG≌△AFG; ②BG=GC;
(2)求△FGC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com