【題目】如圖,李強(qiáng)在教學(xué)樓的點(diǎn)P處觀察對(duì)面的辦公大樓,為了求得對(duì)面辦公大樓的高度,李強(qiáng)測(cè)得辦公大樓頂部點(diǎn)A的仰角為30°,測(cè)得辦公大樓底部點(diǎn)B的俯角為37°,已知測(cè)量點(diǎn)P到對(duì)面辦公大樓上部AD的距離PM為30m,辦公大樓平臺(tái)CD=10m.求辦公大樓的高度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin37°≈,tan37°≈,≈1.73)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知:點(diǎn)A(0,0),B(,0),C(0,1)在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個(gè)頂點(diǎn)在BC邊上,作出的等邊三角形分別是第1個(gè)△AA1B1,第2個(gè)△B1A2B2,第3個(gè)△B2A3B3,…,則第個(gè)等邊三角形的邊長(zhǎng)等于__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC是邊長(zhǎng)為2的等邊三角形,點(diǎn)P為直線BC上的動(dòng)點(diǎn),把線段AP繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)60°至AE,O為AB邊上一動(dòng)點(diǎn),則OE的最小值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過(guò)O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長(zhǎng);
(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三角形紙片中,,,.將該紙片沿過(guò)點(diǎn)的直線折疊,使點(diǎn)落在斜邊上的一點(diǎn)處,折痕記為(如圖1),剪去后得到雙層(如圖2),再沿著邊某頂點(diǎn)的直線將雙層三角形剪開(kāi),使得展開(kāi)后的平面圖形中有一個(gè)是平行四邊形.則所得平行四邊形的周長(zhǎng)為__________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,3),點(diǎn)B和點(diǎn)D的坐標(biāo)分別為(m,0),(n,4),且m>0,四邊形ABCD是矩形.
(1)如圖1,當(dāng)四邊形ABCD為正方形時(shí),求m,n的值;
(2)在圖2中,畫(huà)出矩形ABCD,簡(jiǎn)要說(shuō)明點(diǎn)C,D的位置是如何確定的,并直接用含m的代數(shù)式表示點(diǎn)C的坐標(biāo);
(3)探究:當(dāng)m為何值時(shí),矩形ABCD的對(duì)角線AC的長(zhǎng)度最短.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過(guò)A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,-3),動(dòng)點(diǎn)P在拋物線上.
(1)b =_________,c =_________,點(diǎn)B的坐標(biāo)為_(kāi)____________;(直接填寫(xiě)結(jié)果)
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)過(guò)動(dòng)點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過(guò)點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長(zhǎng)度最短時(shí),求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知在△ABC中,AB=AC,BD和CE分別是∠ABC和∠ACB的角平分線,且BD和CE相交于O點(diǎn).
(1)試說(shuō)明△OBC是等腰三角形;
(2)連接OA,試判斷直線OA與線段BC的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把長(zhǎng)方形紙片紙沿對(duì)角線折疊,設(shè)重疊部分為△,那么,下列說(shuō)法錯(cuò)誤的是( )
A.△是等腰三角形,
B.折疊后∠ABE和∠CBD一定相等
C.折疊后得到的圖形是軸對(duì)稱圖形
D.△EBA和△EDC一定是全等三角形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com