(2001•溫州)如圖,已知:點(diǎn)A,B、C、D在同一條直線上,CE∥DF,AE∥BF,且AE=BF.求證:AC=BD.

【答案】分析:解決此題先要證明△AEC≌△BFD,就可得出結(jié)論.
解答:證明:∵CE∥DF,
∴∠ECA=∠FDB.
∵AE∥BF,
∴∠FBD=∠EAC.
又∵AE=BF,
在△AEC與△BFD中,

∴△AEC≌△BFD(AAS).
∴AC=BD.
點(diǎn)評(píng):本題考查了全等三角形的判定和性質(zhì);解決此類問題,首先要根據(jù)全等三角形的判定,證明三角形全等,然后得出結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2001年全國(guó)中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(02)(解析版) 題型:填空題

(2001•溫州)如圖,在四邊形ABCD中,AB=8,BC=1,∠DAB=30°,∠ABC=60°,則四邊形ABCD的面積為5,AD的長(zhǎng)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國(guó)中考數(shù)學(xué)試題匯編《圓》(03)(解析版) 題型:填空題

(2001•溫州)如圖,AB是⊙O的直徑,AB=2,OC是⊙O的半徑,OC⊥AB,點(diǎn)D在弧AC上,弧AD=2弧CD,點(diǎn)P是半徑OC上一個(gè)動(dòng)點(diǎn),那么AP+PD的最小值等于   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(04)(解析版) 題型:解答題

(2001•溫州)如圖,在正方形ABCD中,AD=8,點(diǎn)E是邊CD上(不包括端點(diǎn))的動(dòng)點(diǎn),AE的中垂線FG分別交AD,AE,BC于點(diǎn)F,H,K交AB的延長(zhǎng)線于點(diǎn)G.
(1)設(shè)DE=m,,用含m的代數(shù)式表示t;
(2)當(dāng)時(shí),求BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年浙江省溫州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•溫州)如圖,已知:點(diǎn)A,B、C、D在同一條直線上,CE∥DF,AE∥BF,且AE=BF.求證:AC=BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年浙江省溫州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2001•溫州)如圖,AB是⊙O的直徑,AB=2,OC是⊙O的半徑,OC⊥AB,點(diǎn)D在弧AC上,弧AD=2弧CD,點(diǎn)P是半徑OC上一個(gè)動(dòng)點(diǎn),那么AP+PD的最小值等于   

查看答案和解析>>

同步練習(xí)冊(cè)答案