【題目】(1)如圖①,在等邊△ABC中,點M是BC邊上的任意一點(不含端點B,C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ACN=∠ABC.
【類比探究】
(2)如圖②,在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結(jié)論∠ACN=∠ABC還成立嗎?請說明理由.
【拓展延伸】
(3)如圖③,在等腰△ABC中,BA=BC,點M是BC上的任意一點(不含端點B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由.
【答案】(1)答案見解析;(2)∠ACN=∠ABC還成立;(3)∠ABC=∠ACN.
【解析】試題分析:(1)利用SAS可證明△BAM≌△CAN,繼而得出結(jié)論;
(2)也可以通過證明△BAM≌△CAN,得出結(jié)論,和(1)的思路完全一樣.
(3)首先得出∠BAC=∠MAN,從而判定△ABC∽△AMN,得到,根據(jù)∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,得到∠BAM=∠CAN,從而判定△BAM∽△CAN,即可得出結(jié)論.
試題解析:解:(1)∵△ABC、△AMN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△BAM和△CAN中,∵AB=AC,∠BAM=∠CAN,AM=AN,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN.
(2)結(jié)論∠ABC=∠ACN仍成立;
理由如下:∵△ABC、△AMN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△BAM和△CAN中,∵AB=AC,∠BAM=∠CAN,AM=AN,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN.
(3)∠ABC=∠ACN;
理由如下:∵BA=BC,MA=MN,頂角∠ABC=∠AMN,∴底角∠BAC=∠MAN,∴△ABC∽△AMN,∴ ,又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,∴∠BAM=∠CAN,∴△BAM∽△CAN,∴∠ABC=∠ACN.
科目:初中數(shù)學 來源: 題型:
【題目】為了調(diào)查學生對垃圾分類及投放知識的了解情況,從甲、乙兩校各隨機抽取40名學生進行了相關(guān)知識測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進行了整理、描述和分析.下面給出了部分信息.
a.甲、乙兩校40名學生成績的頻數(shù)分布統(tǒng)計表如下:
(說明:成績80分及以上為優(yōu)秀,分為良好,分為合格,60分以下為不合格)
b.甲校成績在這一組的是:70707071727373737475767778
c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)如下:
學校 | 平均分(單位:分) | 中位數(shù)(單位:分) | 眾數(shù)(單位:分) |
甲 | 74.2 | 85 | |
乙 | 73.5 | 76 | 84 |
根據(jù)以上信息,回答下列問題:
(1)上表中n的值為_____.
(2)在此次測試中,某學生的成績是74分,在他所屬學校排在前20名,由表中數(shù)據(jù)可知該學生是___校的學生(填“甲”或“乙”),請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經(jīng)過第2017次運動后,動點P的坐標是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(-3,-3),B(-2,-1),C(-1,-2)是直角坐標平面上的三點.
(1)請畫出△ABC關(guān)于x軸對稱的△ABC;
(2)請寫出B點關(guān)于y軸對稱的點B2的坐標;若將點B向上平移h個單位,欲使其落在△A1B1C1內(nèi)部,指出h的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊的邊長為,點從點出發(fā)沿向點運動,點從點出發(fā)沿的延長線向右運動,已知點,都以的速度同時開始運動,運動過程中與相交于點,點運動到點后兩點同時停止運動.
(1)當是直角三角形時,求,兩點運動的時間;
(2)求證:在運動過程中,點始終是線段的中點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘海輪位于燈塔P的北偏東方向55°,距離燈塔為2海里的點A處.如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長是( )
A. 2海里 B. 2sin 55°海里
C. 2cos 55°海里 D. 2tan 55°海里
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)請在橫線上填寫適當?shù)膬?nèi)容,完成下面的解答過程:
如圖①,如果∠ABE+∠BED+∠CDE=360°,試說明AB∥CD.
理由:過點E作EF∥AB
所以∠ABE+∠BEF= °( )
又因為∠ABE+∠BED+∠CDE=360°
所以∠FED+∠CDE= °
所以EF∥ .
又因為EF∥AB,
所以AB∥CD.
(2)如圖②,如果AB∥CD,試說明∠BED=∠B+∠D.
(3)如圖③,如果AB∥CD,∠BEC=α,BF平分∠ABE,CF平分∠DCE,則∠BFC的度數(shù)是 (用含α的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計劃在江漢堤坡種植白楊樹,現(xiàn)甲、乙兩家林場有相同的白楊樹苗可供選擇,其具體銷售方案如下:
甲林場 | 乙林場 | ||
購樹苗數(shù)量 | 銷售單價 | 購樹苗數(shù)量 | 銷售單價 |
不超過1000棵時 | 4元/棵 | 不超過2000棵時 | 4元/棵 |
超過1000棵的部分 | 3.8元/棵 | 超過2000棵的部分 | 3.6元/棵 |
設(shè)購買白楊樹苗x棵,到兩家林場購買所需費用分別為y甲(元)、y乙(元).
(1)該村需要購買1500棵白楊樹苗,若都在甲林場購買所需費用為 元,若都在乙林場購買所需費用為 元;
(2)分別求出y甲、y乙與x之間的函數(shù)關(guān)系式;
(3)如果你是該村的負責人,應(yīng)該選擇到哪家林場購買樹苗合算,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,對角線AC、BD交于點O,AC=24,BD=10,DE⊥AB于E,
(1)求菱形ABCD的周長;(2)求菱形ABCD的面積;(3)求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com