【題目】如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上的一點(diǎn),點(diǎn)C是 的中點(diǎn),弦CM垂直AB于點(diǎn)F,連接AD,交CF于點(diǎn)P,連接BC,∠DAB=30°.

(1)求∠ABC的度數(shù);
(2)若CM=4 ,求 的長度.(結(jié)果保留π)

【答案】
(1)解:如圖,連接BD,

∵AB為⊙O的直徑,

∴∠ADB=90°,

∵∠DAB=30°,

∴∠ABD=90°﹣30°=60°.

∵C是 的中點(diǎn),

∴∠ABC=∠DBC= ∠ABD=30°


(2)解:如圖,連接OC,則∠AOC=2∠ABC=60°,

∵CM⊥直徑AB于點(diǎn)F,

∴CF= CM=2

∴在Rt△COF中,CO= CF= ×2 =4,

的長度為 =


【解析】(1)連接BD,根據(jù)AB為⊙O的直徑,求出∠ADB=90°,得到∠ABD=60°,再根據(jù)C是 的中點(diǎn),求出∠ABC的度數(shù);(2)連接OC,則∠AOC=2∠ABC=60°,求出CO的長,即可求出 的長度.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解垂徑定理的相關(guān)知識(shí),掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧,以及對(duì)圓心角、弧、弦的關(guān)系的理解,了解在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等;在同圓或等圓中,同弧等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點(diǎn)E、F分別在線段BC、CD上,∠EAF=30°,連接EF.

(1)如圖2,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到△A′B′E′(A′B′與AD重合),那么
①∠E′AF度數(shù)②線段BE、EF、FD之間的數(shù)量關(guān)系
(2)如圖3,當(dāng)點(diǎn)E、F分別在線段BC、CD的延長線上時(shí),其他條件不變,請(qǐng)?zhí)骄烤段BE、EF、FD之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:直線AB經(jīng)過點(diǎn)A(0,3)點(diǎn)B( ,0),點(diǎn)M在y軸上,⊙M經(jīng)過點(diǎn)A、B,交x軸于另一點(diǎn)C.

(1)求直線AB的解析式;
(2)求點(diǎn)M的坐標(biāo);
(3)點(diǎn)P是劣弧AC上一個(gè)動(dòng)點(diǎn),當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),問:線段PA,PB,PC有什么數(shù)量關(guān)系?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某巡警騎摩托車在一條南北大道上來回巡邏,一天早晨,他從崗?fù)こ霭l(fā),中午停留在處,規(guī)定向北方向?yàn)檎,?dāng)天上午連續(xù)行駛情況記錄如下(單位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.

1處在崗?fù)ず畏?距離崗?fù)ざ噙h(yuǎn)?

(2)若摩托車每行駛1千米耗油升,這一天上午共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】東方紅中學(xué)位于東西方向的一條路上,一天我們學(xué)校的李老師出校門去家訪,他先向西走100米到聰聰家,再向東走150米到青青家,再向西走200米到剛剛家,請(qǐng)問:

(1)如果把這條路看作一條數(shù)軸,以向東為正方向,以校門口為原點(diǎn),請(qǐng)你在這條數(shù)軸上標(biāo)出聰聰家與青青家的大概位置(數(shù)軸上一格表示50米).

(2)聰聰家與剛剛家相距多遠(yuǎn)?

(3)聰聰家向西20米所表示的數(shù)是多少?

(4)你認(rèn)為可用什么辦法求數(shù)軸上兩點(diǎn)之間的距離?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC⊥AB于點(diǎn)B,連接OC交⊙O于點(diǎn)E,弦AD∥OC,弦DF⊥AB于點(diǎn)G.

(1)求證:點(diǎn)E是 的中點(diǎn);
(2)求證:CD是⊙O的切線;
(3)若AD=12,⊙O的半徑為10,求弦DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班為準(zhǔn)備半期考表彰的獎(jiǎng)品,計(jì)劃從友誼超市購買筆記本和水筆共40件.在獲知某網(wǎng)店有“雙十一”促銷活動(dòng)后,決定從該網(wǎng)店購買這些獎(jiǎng)品.已知筆記本和水筆在這兩家商店的零售價(jià)分別如下表,且在友誼超市購買這些獎(jiǎng)品需花費(fèi)90元.求從網(wǎng)店購買這些獎(jiǎng)品可節(jié)省多少元.

品 名

商 店

筆記本

(元/件)

水筆

(元/件)

友誼超市

2.4

2

網(wǎng) 店

2

1.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BE平分∠ABD,DE平分∠BDC,且∠EBDEDB90°.

(1)試說明:ABCD;

(2)HBE的延長線與直線CD的交點(diǎn)BI平分∠HBD,寫出∠EBI與∠BHD的數(shù)量關(guān)系并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016江蘇省連云港市)環(huán)保局對(duì)某企業(yè)排污情況進(jìn)行檢測,結(jié)果顯示:所排污水中硫化物的濃度超標(biāo),即硫化物的濃度超過最高允許的1.0mg/L.環(huán)保局要求該企業(yè)立即整改,在15天以內(nèi)(含15天)排污達(dá)標(biāo).整改過程中,所排污水中硫化物的濃度ymg/L)與時(shí)間x(天)的變化規(guī)律如圖所示,其中線段AB表示前3天的變化規(guī)律,從第3天起,所排污水中硫化物的濃度y與時(shí)間x成反比例關(guān)系.

1)求整改過程中硫化物的濃度y與時(shí)間x的函數(shù)表達(dá)式;

2)該企業(yè)所排污水中硫化物的濃度,能否在15天以內(nèi)不超過最高允許的1.0mg/L?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案