已知四邊形ABCD中,E,F(xiàn)分別是AB,AD邊上的點(diǎn),DE與CF交于點(diǎn)G.(1)如圖1,若四邊形ABCD是矩形,且DE⊥CF.則 (填“<”或“=”或“>”);
(2)如圖2,若四邊形ABCD是平行四邊形,試探究:
當(dāng)∠B與∠EGC滿足什么關(guān)系時(shí),使得=成立?并證明你的結(jié)論;
(3)如圖3,若BA="BC=" 3,DA="DC=" 4,∠BAD= 90°,DE⊥CF.則的值為 .
圖1 圖2 圖3
(1)=;(2)∠B=∠EGC;(3).
解析試題分析:(1)根據(jù)矩形性質(zhì)得出∠A=∠FDC=90°,求出∠CFD=∠AED,證出△AED∽△DFC即可;
(2)當(dāng)∠B+∠EGC=180°時(shí),成立,證△DFG∽△DEA,得出,證△CGD∽△CDF,得出,即可得出答案;
(3)過C作CN⊥AD于N,CM⊥AB交AB延長線于M,連接BD,設(shè)CN=x,△BAD≌△BCD,推出∠BCD=∠A=90°,證△BCM∽△DCN,求出CM=x,在Rt△CMB中,由勾股定理得出,代入得出方程,求出CN=,證出△AED∽△NFC,即可得出答案.
試題解析:(1)證明:∵四邊形ABCD是矩形,
∴∠A=∠FDC=90°,
∵CF⊥DE,
∴∠DGF=90°,
∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,
∴∠CFD=∠AED,
∵∠A=∠CDF,
∴△AED∽△DFC,
∴,即=.
(2)當(dāng)∠B+∠EGC=180°時(shí),=成立.
證明:∵四邊形ABCD是平行四邊形,
∴∠B=∠ADC,AD∥BC,
∴∠B+∠A=180°,
∵∠B+∠EGC=180°,
∴∠A=∠EGC=∠FGD,
∵∠FDG=∠EDA,
∴△DFG∽△DEA,
∴,
∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,
∴∠CGD=∠CDF,
∵∠GCD=∠DCF,
∴△CGD∽△CDF,
∴,
∴,
∴,
即當(dāng)∠B+∠EGC=180°時(shí),成立.
(3)解:.
理由是:過C作CN⊥AD于N,CM⊥AB交AB延長線于M,連接BD,設(shè)CN=x,
∵AB⊥AD,
∴∠A=∠M=∠CNA=90°,
∴四邊形AMCN是矩形,
∴AM=CN,AN=CM,
∵在△BAD和△BCD中
∴△BAD≌△BCD(SSS),
∴∠BCD=∠A=90°,
∴∠ABC+∠ADC=180°,
∵∠ABC+∠CBM=180°,
∴∠CBM=∠ADC,
∵∠CND=∠M=90°,
∴△BCM∽△DCN,
∴,
∴
∴
在Rt△CMB中,,BM=AM﹣AB=x﹣6,由勾股定理得:,
∴,
解得 x=0(舍去),x=
∴CN=,
∵∠A=∠FGD=90°,
∴∠AED+∠AFG=180°,
∵∠AFG+∠NFC=180°,
∴∠AED=∠CFN,
∵∠A=∠CNF=90°,
∴△AED∽△NFC,
∴
考點(diǎn): 相似三角形綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動點(diǎn)M,N從點(diǎn)C同時(shí)出發(fā),均以每秒1cm的速度分別沿CA、CB向終點(diǎn)A,B移動,同時(shí)動點(diǎn)P從點(diǎn)B出發(fā),以每秒2cm的速度沿BA向終點(diǎn)A移動,連接PM,PN,設(shè)移動時(shí)間為t(單位:秒,0<t<2.5).
(1)當(dāng)t為何值時(shí),以A,P,M為頂點(diǎn)的三角形與△ABC相似?
(2)是否存在某一時(shí)刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與點(diǎn)A、點(diǎn)B重合),分別連接ED,EC,可以把四邊形ABCD分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點(diǎn);如果這三個(gè)三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強(qiáng)相似點(diǎn).解決問題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個(gè)小正方形的邊長為1)的格點(diǎn)(即每個(gè)小正方形的頂點(diǎn))上,試在圖2中畫出矩形ABCD的邊AB上的一個(gè)強(qiáng)相似點(diǎn)E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處.若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個(gè)強(qiáng)相似點(diǎn),試探究AB和BC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(1)如圖所示,如果你的位置在點(diǎn)A,你能看到后面那座高大的建筑物嗎?為什么?
(2)如果兩樓之間相距MN=m,兩樓的高各為10m和30m,則當(dāng)你至少與M樓相距多少m時(shí),才能看到后面的N樓?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,△ABC是格點(diǎn)三角形(三角形的三個(gè)頂點(diǎn)都是小正方形的頂點(diǎn)).
(1)若以格點(diǎn)P、A、B為頂點(diǎn)的三角形與△ABC相似但不全等,請作出所有符合要求的點(diǎn)P;
(2)請寫出符合條件格點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,菱形ABCD中,∠A=60°,點(diǎn)P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運(yùn)動到D終止,點(diǎn)Q從A與P同時(shí)出發(fā),沿邊AD勻速運(yùn)動到D終止,設(shè)點(diǎn)P運(yùn)動的時(shí)間為t(s).△APQ的面積S(cm2)與t(s)之間函數(shù)關(guān)系的圖象由圖2中的曲線段OE與線段EF、FG給出.
(1)求點(diǎn)Q運(yùn)動的速度;
(2)求圖2中線段FG的函數(shù)關(guān)系式;
(3)問:是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知在△ABC中,∠ABC=90°,AB=3,BC=4.點(diǎn)Q是線段AC上的一個(gè)動點(diǎn),過點(diǎn)Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點(diǎn)P.
(1)當(dāng)點(diǎn)P在線段AB上時(shí),求證:△APQ∽△ABC;
(2)當(dāng)△PQB為等腰三角形時(shí),求AP的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com