如圖1,菱形ABCD中,∠A=60°,點(diǎn)P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運(yùn)動(dòng)到D終止,點(diǎn)Q從A與P同時(shí)出發(fā),沿邊AD勻速運(yùn)動(dòng)到D終止,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).△APQ的面積S(cm2)與t(s)之間函數(shù)關(guān)系的圖象由圖2中的曲線段OE與線段EF、FG給出.

(1)求點(diǎn)Q運(yùn)動(dòng)的速度;
(2)求圖2中線段FG的函數(shù)關(guān)系式;
(3)問:是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請說明理由.

(1)點(diǎn)Q運(yùn)動(dòng)的速度是1cm/s;(2);(3)存在,t=或t=.

解析試題分析:(1)根據(jù)函數(shù)圖象中E點(diǎn)所代表的實(shí)際意義求解.E點(diǎn)表示點(diǎn)P運(yùn)動(dòng)到與點(diǎn)B重合時(shí)的情形,運(yùn)動(dòng)時(shí)間為3s,可得AB=6cm;再由SAPQ=,可求得AQ的長度,進(jìn)而得到點(diǎn)Q的運(yùn)動(dòng)速度;
(2)函數(shù)圖象中線段FG,表示點(diǎn)Q運(yùn)動(dòng)至終點(diǎn)D之后停止運(yùn)動(dòng),而點(diǎn)P在線段CD上繼續(xù)運(yùn)動(dòng)的情形.如答圖2所示,求出S的表達(dá)式,并確定t的取值范圍;
(3)當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)時(shí),PQ將菱形ABCD分成△APQ和五邊形PBCDQ兩部分,如答圖3所示,求出t的值;當(dāng)點(diǎn)P在BC上運(yùn)動(dòng)時(shí),PQ將菱形分為梯形ABPQ和梯形PCDQ兩部分,如答圖4所示,求出t的值.
試題解析:(1)由題意,可知題圖2中點(diǎn)E表示點(diǎn)P運(yùn)動(dòng)至點(diǎn)B時(shí)的情形,所用時(shí)間為3s,則菱形的邊長AB=2×3=6cm.此時(shí)如答圖1所示:

AQ邊上的高h(yuǎn)=AB•sin60°=6×=cm, S=SAPQ= AQ•h=AQ×3=,解得AQ=3cm.∴點(diǎn)Q的運(yùn)動(dòng)速度為:3÷3=1cm/s.(2)由題意,可知題圖2中FG段表示點(diǎn)P在線段CD上運(yùn)動(dòng)時(shí)的情形.如答圖2所示:

點(diǎn)Q運(yùn)動(dòng)至點(diǎn)D所需時(shí)間為:6÷1=6s,點(diǎn)P運(yùn)動(dòng)至點(diǎn)C所需時(shí)間為12÷2=6s,至終點(diǎn)D所需時(shí)間為18÷2=9s.
因此在FG段內(nèi),點(diǎn)Q運(yùn)動(dòng)至點(diǎn)D停止運(yùn)動(dòng),點(diǎn)P在線段CD上繼續(xù)運(yùn)動(dòng),且時(shí)間t的取值范圍為:6≤t≤9.過點(diǎn)P作PE⊥AD交AD的延長線于點(diǎn)E,則PE=PD•sin60°=(18-2t)×,
S=SAPQ=AD•PE=×6×(?+)=.
∴FG段的函數(shù)表達(dá)式為:S=(6≤t≤9).
(3)菱形ABCD的面積為:6×6×sin60°=18,
當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)時(shí),PQ將菱形ABCD分成△APQ和五邊形PBCDQ兩部分,如答圖3所示.
此時(shí)△APQ的面積S=AQ•AP•sin60°=t•2t×=,
根據(jù)題意,得=,
解得:t=s,

當(dāng)點(diǎn)P在BC上運(yùn)動(dòng)時(shí),PQ將菱形分為梯形ABPQ和梯形PCDQ兩部分,如答圖4所示.
此時(shí),有S梯形ABPQ=S菱形ABCD,即(2t-6+t)×6×=×18,
解得t=s,
答:存在,當(dāng)t=時(shí),使PQ將菱形ABCD的面積恰好分成1:5的兩部分.
考點(diǎn):1、相似形綜合題;2、動(dòng)點(diǎn)問題的函數(shù)圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC在坐標(biāo)平面內(nèi)三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,2)、B(3,3)、C(3,1).

(1)根據(jù)題意,請你在圖中畫出△ABC;
(2)在原圖中,以B為位似中心,畫出△A′BC′使它與△ABC位似且位似比是3:1,并寫出頂點(diǎn)A′和C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖①,已知線段AB=8,以AB為直徑作半圓O,再以O(shè)A為直徑作半圓C,P是半圓C上的一個(gè)動(dòng)點(diǎn)(P與點(diǎn)A,O不重合),AP的延長線交半圓O于點(diǎn)D。

(1)判斷線段AP與PD的大小關(guān)系,并說明理由;
(2)連接PC,當(dāng)∠ACP=600時(shí),求弧AD的長;
(3)過點(diǎn)D作DE⊥AB,垂足為E(如圖②),設(shè)AP=x,OE=y,求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知四邊形ABCD中,E,F(xiàn)分別是AB,AD邊上的點(diǎn),DE與CF交于點(diǎn)G.(1)如圖1,若四邊形ABCD是矩形,且DE⊥CF.則       (填“<”或“=”或“>”);
(2)如圖2,若四邊形ABCD是平行四邊形,試探究:
當(dāng)∠B與∠EGC滿足什么關(guān)系時(shí),使得=成立?并證明你的結(jié)論;
(3)如圖3,若BA="BC=" 3,DA="DC=" 4,∠BAD= 90°,DE⊥CF.則的值為        

圖1                     圖2                     圖3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知△ABC是邊長為6cm的等邊三角形,動(dòng)點(diǎn)P,Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB,BC方向勻速運(yùn)動(dòng),其中點(diǎn)P運(yùn)動(dòng)的速度是1cm/s,點(diǎn)Q運(yùn)動(dòng)的速度是2cm/s,當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)都停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),

解答下列問題:
(1)當(dāng)為何值時(shí),△BPQ為直角三角形;
(2)設(shè)△BPQ的面積為S(cm2),求S與的函數(shù)關(guān)系式;
(3)作QR∥BA交AC于點(diǎn)R,連結(jié)PR,當(dāng)為何值時(shí),△APR∽△PRQ ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

晚上,小亮走在大街上.他發(fā)現(xiàn):當(dāng)他站在大街兩邊的兩盞路燈之間,并且自己被兩邊路燈照在地上的兩個(gè)影子成一直線時(shí),自己右邊的影子長為3米,左邊的影子長為1.5米.又知自己身高1.80米,兩盞路燈的高相同,兩盞路燈之間的距離為12米.求路燈的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中點(diǎn),連接AE、AC.

求證:(1)點(diǎn)F是DC上一點(diǎn),連接EF,交AC于點(diǎn)O(如圖1),△AOE∽△COF;
(2)若點(diǎn)F是DC的中點(diǎn),連接BD,交AE與點(diǎn)G(如圖2),求證:四邊形EFDG是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.連接BD,AE⊥BD,垂足為E.

(1)求證:△ABE∽△DBC;
(2)求線段AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,矩形ABCD中,AB=12cm,AD=16cm,動(dòng)點(diǎn)E、F分別從A點(diǎn)、C點(diǎn)同時(shí)出發(fā),均以2cm/s的速度分別沿AD向D點(diǎn)和沿CB向B點(diǎn)運(yùn)動(dòng)。

(1)經(jīng)過幾秒首次可使EF⊥AC?
(2)若EF⊥AC,在線段AC上,是否存在一點(diǎn)P,使?若存在,請說明P點(diǎn)的位置,并予以證明;若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案