如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點,過C作CD⊥AB于點D,CD交AE于點F,過C作CG∥AE交BA的延長線于點G.
(1)求證:CG是⊙O的切線.
(2)求證:AF=CF.
(3)若∠EAB=30°,CF=2,求GA的長.
(1)連接OC,由C是劣弧AE的中點,根據(jù)垂徑定理得OC⊥AE,而CG∥AE,所以CG⊥OC,然后根據(jù)切線的判定定理即可得到結(jié)論。
(2)連接AC、BC,根據(jù)圓周角定理得∠ACB=90°,∠B=∠1,而CD⊥AB,則∠CDB=90°,根據(jù)等角的余角相等得到∠B=∠2,所以∠1=∠2,于是得到AF=CF。
(3)2
【解析】
分析:(1)連接OC,由C是劣弧AE的中點,根據(jù)垂徑定理得OC⊥AE,而CG∥AE,所以CG⊥OC,然后根據(jù)切線的判定定理即可得到結(jié)論。
(2)連接AC、BC,根據(jù)圓周角定理得∠ACB=90°,∠B=∠1,而CD⊥AB,則∠CDB=90°,根據(jù)等角的余角相等得到∠B=∠2,所以∠1=∠2,于是得到AF=CF。
(3)在Rt△ADF中,由于∠DAF=30°,F(xiàn)A=FC=2,根據(jù)含30度的直角三角形三邊的關(guān)系得到DF=1,AD=,再由AF∥CG,根據(jù)平行線分線段成比例得到DA:AG=DF:CF然后把DF=1,AD=,CF=2代入計算即可。
解:(1)證明:如圖,連接OC,
∵C是劣弧AE的中點,∴OC⊥AE。
∵CG∥AE,∴CG⊥OC。
∵OC是⊙O的半徑,∴CG是⊙O的切線。
(2)證明:連接AC、BC,
∵AB是⊙O的直徑,∴∠ACB=90°。
∴∠2+∠BCD=90°。
∵CD⊥AB,∴∠B+∠BCD=90°!唷螧=∠2。
∵AC弧=CE弧,∴∠1=∠B。
∴∠1=∠2!郃F=CF。
(3)在Rt△ADF中,∠DAF=30°,F(xiàn)A=FC=2,∴DF=AF=1。
∴AD=DF=。
∵AF∥CG,∴DA:AG=DF:CF,即:AG=1:2。
∴AG=2。
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com