【題目】如圖,⊙O是△ABC的外接圓,O點在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線,與AB的延長線相交于點P.
(1)求證:PD是⊙O的切線;
(2)求證:△PBD∽△DCA;
(3)當(dāng)AB=6,AC=8時,求線段PB的長.

【答案】
(1)證明:∵圓心O在BC上,

∴BC是圓O的直徑,

∴∠BAC=90°,

連接OD,

∵AD平分∠BAC,

∴∠BAC=2∠DAC,

∵∠DOC=2∠DAC,

∴∠DOC=∠BAC=90°,即OD⊥BC,

∵PD∥BC,

∴OD⊥PD,

∵OD為圓O的半徑,

∴PD是圓O的切線


(2)證明:∵PD∥BC,

∴∠P=∠ABC,

∵∠ABC=∠ADC,

∴∠P=∠ADC,

∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,

∴∠PBD=∠ACD,

∴△PBD∽△DCA


(3)解:∵△ABC為直角三角形,

∴BC2=AB2+AC2=62+82=100,

∴BC=10,

∵OD垂直平分BC,

∴DB=DC,

∵BC為圓O的直徑,

∴∠BDC=90°,

在Rt△DBC中,DB2+DC2=BC2,即2DC2=BC2=100,

∴DC=DB=5

∵△PBD∽△DCA,

= ,

則PB= = =


【解析】(1)由直徑所對的圓周角為直角得到∠BAC為直角,再由AD為角平分線,得到一對角相等,根據(jù)同弧所對的圓心角等于圓周角的2倍及等量代換確定出∠DOC為直角,與平行線中的一條垂直,與另一條也垂直得到OD與PD垂直,即可得證;(2)由PD與BC平行,得到一對同位角相等,再由同弧所對的圓周角相等及等量代換得到∠P=∠ACD,根據(jù)同角的補角相等得到一對角相等,利用兩對角相等的三角形相似即可得證;(3)由三角形ABC為直角三角形,利用勾股定理求出BC的長,再由OD垂直平分BC,得到DB=DC,根據(jù)(2)的相似,得比例,求出所求即可.
【考點精析】認(rèn)真審題,首先需要了解相似三角形的判定與性質(zhì)(相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一布袋中有紅、黃、白三種顏色的球各一個,它們除顏色外,其它都一樣,小亮從布袋摸出一個球后放回去搖勻,再摸出一個球.
(1)請你用列舉法(列表法或樹形圖)分析并求出小亮兩次都能摸到白球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,E、F分別是了AB、AD上的一點,且BF⊥CE,垂足為G,求證:AF=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是將拋物線y=﹣x2平移后得到的拋物線,其對稱軸為x=1,與x軸的一個交點為A(﹣1,0),另一個交點為B,與y軸的交點為C.

(1)求拋物線的函數(shù)表達式;
(2)若點N為拋物線上一點,且BC⊥NC,求點N的坐標(biāo);
(3)點P是拋物線上一點,點Q是一次函數(shù)y= x+ 的圖象上一點,若四邊形OAPQ為平行四邊形,這樣的點P、Q是否存在?若存在,分別求出點P,Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l的函數(shù)表達式為y=x,點O1的坐標(biāo)為(1,0),以O(shè)1為圓心,O1O為半徑畫圓,交直線l于點P1 , 交x軸正半軸于點O2 , 以O(shè)2為圓心,O2O為半徑畫圓,交直線l于點P2 , 交x軸正半軸于點O3 , 以O(shè)3為圓心,O3O為半徑畫圓,交直線l于點P3 , 交x軸正半軸于點O4;…按此做法進行下去,其中 的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABCD沿EF對折,使點A落在點C處,若∠A=60°,AD=4,AB=8,則AE的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點C順時針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時,連接B1B,取BB1的中點D,連接A1D,則A1D的長度是(
A.
B.2
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC和△DCE是兩個全等的等腰三角形,BC,CE為底邊.


(1)將圖1中的△DCE繞C點順時針方向旋轉(zhuǎn)至∠BCE=∠ACB的位置,分別延長AB,DE交于點F(如圖2),此時,四邊形BCEF為何種四邊形?請證明你的結(jié)論;
(2)如果將圖1中的△DCE繞C點順時針旋轉(zhuǎn)至∠BCE=2∠ACB的位置,連接AD,BE(如圖3),證明四邊形ABED為矩形;
(3)在(2)的條件下,四邊形ABED有無可能成為正方形?如果有可能成為正方形,求出∠ABC的度數(shù)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC為等邊三角形,點D為直線BC上的一動點(點D不與B、C重合),以AD為邊作菱形ADEF(A、D、E、F按逆時針排列),使∠DAF=60°,連接CF.
(1)如圖1,當(dāng)點D在邊BC上時,求證:①BD=CF;②AC=CF+CD;
(2)如圖2,當(dāng)點D在邊BC的延長線上且其他條件不變時,結(jié)論AC=CF+CD是否成立?若不成立,請寫出AC、CF、CD之間存在的數(shù)量關(guān)系,并說明理由;
(3)如圖3,當(dāng)點D在邊CB的延長線上且其他條件不變時,補全圖形,并直接寫出AC、CF、CD之間存在的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案