【題目】如圖,是將拋物線y=﹣x2平移后得到的拋物線,其對(duì)稱軸為x=1,與x軸的一個(gè)交點(diǎn)為A(﹣1,0),另一個(gè)交點(diǎn)為B,與y軸的交點(diǎn)為C.

(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)N為拋物線上一點(diǎn),且BC⊥NC,求點(diǎn)N的坐標(biāo);
(3)點(diǎn)P是拋物線上一點(diǎn),點(diǎn)Q是一次函數(shù)y= x+ 的圖象上一點(diǎn),若四邊形OAPQ為平行四邊形,這樣的點(diǎn)P、Q是否存在?若存在,分別求出點(diǎn)P,Q的坐標(biāo);若不存在,說明理由.

【答案】
(1)

解:設(shè)拋物線的解析式是y=﹣(x﹣1)2+k.

把(﹣1,0)代入得0=﹣(﹣1﹣1)2+k,

解得k=4,

則拋物線的解析式是y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;


(2)

解:在y=﹣x2+2x+3中令x=0,則y=3,即C的坐標(biāo)是(0,3),OC=3.

∵B的坐標(biāo)是(3,0),

∴OB=3,

∴OC=OB,則△OBC是等腰直角三角形.

∴∠OCB=45°,

過點(diǎn)N作NH⊥y軸,垂足是H.

∵∠NCB=90°,

∴∠NCH=45°,

∴NH=CH,

∴HO=OC+CH=3+CH=3+NH,

設(shè)點(diǎn)N縱坐標(biāo)是(a,﹣a2+2a+3).

∴a+3=﹣a2+2a+3,

解得a=0(舍去)或a=1,

∴N的坐標(biāo)是(1,4);


(3)

解:∵四邊形OAPQ是平行四邊形,則PQ=OA=1,且PQ∥OA,

設(shè)P(t,﹣t2+2t+3),代入y= x+ ,則﹣t2+2t+3= (t+1)+

整理,得2t2﹣t=0,

解得t=0或

∴﹣t2+2t+3的值為3或

∴P、Q的坐標(biāo)是(0,3),(1,3)或( )、( ).


【解析】(1)已知拋物線的對(duì)稱軸,因而可以設(shè)出頂點(diǎn)式,利用待定系數(shù)法求函數(shù)解析式;(2)首先求得B和C的坐標(biāo),易證△OBC是等腰直角三角形,過點(diǎn)N作NH⊥y軸,垂足是H,設(shè)點(diǎn)N縱坐標(biāo)是(a,﹣a2+2a+3),根據(jù)CH=NH即可列方程求解;(3)四邊形OAPQ是平行四邊形,則PQ=OA=1,且PQ∥OA,設(shè)P(t,﹣t2+2t+3),代入y= x+ ,即可求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y=﹣x2+bx+c經(jīng)過A(﹣3,0)和B(0,3)兩點(diǎn),將這條拋物線的頂點(diǎn)記為M,它的對(duì)稱軸與x軸的交點(diǎn)記為N.
(1)求拋物線C的表達(dá)式;
(2)求點(diǎn)M的坐標(biāo);
(3)將拋物線C平移到拋物線C′,拋物線C′的頂點(diǎn)記為M′,它的對(duì)稱軸與x軸的交點(diǎn)記為N′.如果以點(diǎn)M、N、M′、N′為頂點(diǎn)的四邊形是面積為16的平行四邊形,那么應(yīng)將拋物線C怎樣平移?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O直徑,AC是⊙O的弦,∠BAC的平分線AD交⊙O于D,過點(diǎn)D作DE⊥AC交AC的延長線于點(diǎn)E,OE交AD于點(diǎn)F,cos∠BAC=

(1)求證:DE是⊙O的切線;
(2)若AF=8,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,弦CD與直徑AB相交于點(diǎn)F.點(diǎn)E在⊙O外,做直線AE,且∠EAC=∠D
(1)求證:直線AE是⊙O的切線.
(2)若∠BAC=30°,BC=4,cos∠BAD= ,CF= ,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AB=10cm,BC=8cm,點(diǎn)P從點(diǎn)A沿AC向點(diǎn)C以1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C沿CB向點(diǎn)B以2cm/s的速度運(yùn)動(dòng)(點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B停止),在運(yùn)動(dòng)過程中,四邊形PABQ的面積最小值為(
A.19cm2
B.16cm2
C.15cm2
D.12cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)前夕,在東昌湖舉行第七屆全民健身運(yùn)動(dòng)會(huì)龍舟比賽中,甲、乙兩隊(duì)在500米的賽道上,所劃行的路程y(m)與時(shí)間x(min)之間的函數(shù)關(guān)系如圖所示,下列說法錯(cuò)誤的是(
A.乙隊(duì)比甲隊(duì)提前0.25min到達(dá)終點(diǎn)
B.當(dāng)乙隊(duì)劃行110m時(shí),此時(shí)落后甲隊(duì)15m
C.0.5min后,乙隊(duì)比甲隊(duì)每分鐘快40m
D.自1.5min開始,甲隊(duì)若要與乙隊(duì)同時(shí)到達(dá)終點(diǎn),甲隊(duì)的速度需要提高到255m/min

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,O點(diǎn)在BC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD、CD,過點(diǎn)D作BC的平行線,與AB的延長線相交于點(diǎn)P.
(1)求證:PD是⊙O的切線;
(2)求證:△PBD∽△DCA;
(3)當(dāng)AB=6,AC=8時(shí),求線段PB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖中的折線ABC表示某汽車的耗油量y(單位:L/km)與速度x(單位:km/h)之間的函數(shù)關(guān)系(30≤x≤120),已知線段BC表示的函數(shù)關(guān)系中,該汽車的速度每增加1km/h,耗油量增加0.002L/km.
(1)當(dāng)速度為50km/h、100km/h時(shí),該汽車的耗油量分別為L/km、 L/km.
(2)求線段AB所表示的y與x之間的函數(shù)表達(dá)式.
(3)速度是多少時(shí),該汽車的耗油量最低?最低是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y= x﹣ 與x,y軸分別交于點(diǎn)A,B,與反比例函數(shù)y= (k>0)圖象交于點(diǎn)C,D,過點(diǎn)A作x軸的垂線交該反比例函數(shù)圖象于點(diǎn)E.
(1)求點(diǎn)A的坐標(biāo).
(2)若AE=AC. ①求k的值.
②試判斷點(diǎn)E與點(diǎn)D是否關(guān)于原點(diǎn)O成中心對(duì)稱?并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案