【題目】已知,如圖:在平面直角坐標系中,O為坐標原點,四邊形OABC是矩形,點A、C的坐標分別為A(10,0)、C(0,4),點D是OA的中點,點P在BC邊上運動,當△ODP是腰長為5的等腰三角形時,點P的坐標為
【答案】(3,4)或(2,4)或(8,4)
【解析】解:(1)OD是等腰三角形的底邊時,P就是OD的垂直平分線與CB的交點,此時OP=PD≠5;(2)OD是等腰三角形的一條腰時:①若點O是頂角頂點時,P點就是以點O為圓心,以5為半徑的弧與CB的交點,
在直角△OPC中,CP= = =3,則P的坐標是(3,4).
②若D是頂角頂點時,P點就是以點D為圓心,以5為半徑的弧與CB的交點,
過D作DM⊥BC于點M,
在直角△PDM中,PM= =3,
當P在M的左邊時,CP=5﹣3=2,則P的坐標是(2,4);
當P在M的右側(cè)時,CP=5+3=8,則P的坐標是(8,4).
故P的坐標為:(3,4)或(2,4)或(8,4).
故答案為:(3,4)或(2,4)或(8,4).
題中沒有指明△ODP的腰長與底分別是哪個邊,故應該分情況進行分析,從而求得點P的坐標.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點.
(1)求該拋物線的解析式;
(2)設(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最。咳舸嬖,求出Q點的坐標;若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一小球從斜坡O點處拋出,球的拋出路線可以用二次函數(shù)y=﹣x2+4x刻畫,斜坡可以用一次函數(shù)y= x刻畫.
(1)請用配方法求二次函數(shù)圖象的最高點P的坐標;
(2)小球的落點是A,求點A的坐標;
(3)連接拋物線的最高點P與點O、A得△POA,求△POA的面積;
(4)在OA上方的拋物線上存在一點M(M與P不重合),△MOA的面積等于△POA的面積.請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一個四邊形的兩條對角線互相垂直且相等,則稱這個四邊形為“奇妙四邊形”.如圖1,四邊形ABCD中,若AC=BD,AC⊥BD,則稱四邊形ABCD為奇妙四邊形.根據(jù)“奇妙四邊形”對角線互相垂直的特征可得“奇妙四邊形”的一個重要性質(zhì):“奇妙四邊形”的面積等于兩條對角線乘積的一半.根據(jù)以上信息回答:
(1)矩形“奇妙四邊形”(填“是”或“不是”);
(2)如圖2,已知⊙O的內(nèi)接四邊形ABCD是“奇妙四邊形”,若⊙O的半徑為6,∠BCD=60°.求“奇妙四邊形”ABCD的面積;
(3)如圖3,已知⊙O的內(nèi)接四邊形ABCD是“奇妙四邊形”作OM⊥BC于M.請猜測OM與AD的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=8cm,BC=16cm,點P從點A出發(fā)沿AB邊想向點B以2cm/s的速度移動,點Q從點B出發(fā)沿BC邊向點C以4cm/s的速度移動,如果P、Q同時出發(fā),經(jīng)過幾秒后△PBQ和△ABC相似?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學習投影后,小明、小穎利用燈光下自己的影子長度來測量一路燈的高度,并探究影子長度的變化規(guī)律.如圖,在同一時間,身高為1.6m的小明(AB)的影子BC長是3m,而小穎(EH)剛好在路燈燈泡的正下方H點,并測得HB=6m.
(1)請在圖中畫出形成影子的光線,并確定路燈燈泡所在的位置G;
(2)求路燈燈泡的垂直高度GH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l:y=﹣x,雙曲線y= ,在l上取一點A(a,﹣a)(a>0),過A作x軸的垂線交雙曲線于點B,過B作y軸的垂線交l于點C,過C作x軸的垂線交雙曲線于點D,過D作y軸的垂線交l于點E,此時E與A重合,并得到一個正方形ABCD,若原點O在正方形ABCD的對角線上且分這條對角線為1:2的兩條線段,則a的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為有效開發(fā)海洋資源,保護海洋權(quán)益,我國對南海諸島進行了全面調(diào)查,一測量船在A島測得B島在北偏西30°,C島在北偏東15°,航行100海里到達B島,在B島測得C島在北偏東45°,求B,C兩島及A,C兩島的距離( ≈2.45,結(jié)果保留到整數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com