【題目】如圖,一小球從斜坡O點(diǎn)處拋出,球的拋出路線可以用二次函數(shù)y=﹣x2+4x刻畫,斜坡可以用一次函數(shù)y= x刻畫.
(1)請(qǐng)用配方法求二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo);
(2)小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo);
(3)連接拋物線的最高點(diǎn)P與點(diǎn)O、A得△POA,求△POA的面積;
(4)在OA上方的拋物線上存在一點(diǎn)M(M與P不重合),△MOA的面積等于△POA的面積.請(qǐng)直接寫出點(diǎn)M的坐標(biāo).
【答案】
(1)
解:由題意得,y=﹣x2+4x=﹣(x﹣2)2+4,
故二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo)為(2,4)
(2)
解:聯(lián)立兩解析式可得: ,
解得: ,或 .
故可得點(diǎn)A的坐標(biāo)為( , )
(3)
解:如圖,作PQ⊥x軸于點(diǎn)Q,AB⊥x軸于點(diǎn)B.
S△POA=S△POQ+S△梯形PQBA﹣S△BOA
= ×2×4+ ×( +4)×( ﹣2)﹣ × ×
=4+ ﹣
=
(4)
解:過P作OA的平行線,交拋物線于點(diǎn)M,連結(jié)OM、AM,則△MOA的面積等于△POA的面積.
設(shè)直線PM的解析式為y= x+b,
∵P的坐標(biāo)為(2,4),
∴4= ×2+b,解得b=3,
∴直線PM的解析式為y= x+3.
由 ,解得 , ,
∴點(diǎn)M的坐標(biāo)為( , ).
【解析】(1)利用配方法拋物線的一般式化為頂點(diǎn)式,即可求出二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo);(2)聯(lián)立兩解析式,可求出交點(diǎn)A的坐標(biāo);(3)作PQ⊥x軸于點(diǎn)Q,AB⊥x軸于點(diǎn)B.根據(jù)S△POA=S△POQ+S△梯形PQBA﹣S△BOA , 代入數(shù)值計(jì)算即可求解;(4)過P作OA的平行線,交拋物線于點(diǎn)M,連結(jié)OM、AM,由于兩平行線之間的距離相等,根據(jù)同底等高的兩個(gè)三角形面積相等,可得△MOA的面積等于△POA的面積.設(shè)直線PM的解析式為y= x+b,將P(2,4)代入,求出直線PM的解析式為y= x+3.再與拋物線的解析式聯(lián)立,得到方程組 ,解方程組即可求出點(diǎn)M的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在矩形ABCD中,AB=4,BC=2,點(diǎn)M為邊BC的中點(diǎn),點(diǎn)P為邊CD上的動(dòng)點(diǎn)(點(diǎn)P異于C,D兩點(diǎn)).連接PM,過點(diǎn)P作PM的垂線與射線DA相交于點(diǎn)E(如圖),設(shè)CP=x,DE=y.
(1)寫出y與x之間的關(guān)系式;
(2)若點(diǎn)E與點(diǎn)A重合,則x的值為;
(3)是否存在點(diǎn)P,使得點(diǎn)D關(guān)于直線PE的對(duì)稱點(diǎn)D′落在邊AB上?若存在,求x的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南沙群島是我國(guó)固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進(jìn)行捕魚作業(yè),當(dāng)漁船航行至B處時(shí),測(cè)得該島位于正北方向20(1+ )海里的C處,為了防止某國(guó)海巡警干擾,就請(qǐng)求我A處的漁監(jiān)船前往C處護(hù)航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測(cè)得BC=6米,CD=4米,∠BCD=150°,在D處測(cè)得電線桿頂端A的仰角為30°,試求電線桿的高度(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+3的對(duì)稱軸是直線x=1.
(1)求證:2a+b=0;
(2)若關(guān)于x的方程ax2+bx﹣8=0的一個(gè)根為4,求方程的另一個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】你會(huì)求的值嗎?這個(gè)問題看上去很復(fù)雜,我們可以先考慮簡(jiǎn)單的情況,通過計(jì)算,探索規(guī)律:
(1)由上面的規(guī)律我們可以大膽猜想,得到
=________________
利用上面的結(jié)論,求:
(2)的值。
(3)求的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)圖象中,當(dāng)x>0時(shí),y隨x的增大而減小的是( )
A.y=﹣
B.y=x
C.y=x2
D.y=﹣(x+1)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖:在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為A(10,0)、C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC邊上運(yùn)動(dòng),當(dāng)△ODP是腰長(zhǎng)為5的等腰三角形時(shí),點(diǎn)P的坐標(biāo)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E,N,P,G分別在邊AB,BC,CD,DA上,點(diǎn)M,F(xiàn),Q都在對(duì)角線BD上,且四邊形MNPQ和AEFG均為正方形,則 的值等于 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com