【題目】某校在一次社會實踐活動中,組織學(xué)生參觀了虎園、烈士陵園、博物館和植物園,為了解本次社會實踐活動的效果,學(xué)校隨機抽取了部分學(xué)生,對“最喜歡的景點”進行了問卷調(diào)查,并根據(jù)統(tǒng)計結(jié)果繪制了如下不完整的統(tǒng)計圖.其中最喜歡烈士陵園的學(xué)生人數(shù)與最喜歡博物館的學(xué)生人數(shù)之比為2:1,請結(jié)合統(tǒng)計圖解答下列問題:

(1)本次活動抽查了   名學(xué)生;

(2)請補全條形統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中,最喜歡植物園的學(xué)生人數(shù)所對應(yīng)扇形的圓心角是   度;

(4)該校此次參加社會實踐活動的學(xué)生有720人,請求出最喜歡烈士陵園的人數(shù)約有多少人?

【答案】(1)60;(2)24(3)36;(4)288

【解析】

(1)由虎園人數(shù)及其所占百分比可得總?cè)藬?shù);

(2)設(shè)最喜歡博物館的學(xué)生人數(shù)為x, 則最喜歡烈士陵園的學(xué)生人數(shù)為2x,根據(jù)各參觀項目人數(shù)和等于總?cè)藬?shù)求得x的值,據(jù)此可補全圖形 ;

(3)乘以最喜歡植物園的學(xué)生人數(shù)占被調(diào)查人數(shù)的比例可得;

(4)用總?cè)藬?shù)乘以樣本中最喜歡烈士陵園的人數(shù)所占比例.

(1)本次活動調(diào)查的學(xué)生人數(shù)為18÷30%=60人,

故答案為:60;

(2)設(shè)最喜歡博物館的學(xué)生人數(shù)為x,則最喜歡烈士陵園的學(xué)生人數(shù)為2x,

則x+2x=60﹣18﹣6,

解得:x=12,

即最喜歡博物館的學(xué)生人數(shù)為12,則最喜歡烈士陵園的學(xué)生人數(shù)為24,

補全條形圖如下:

(3)在扇形統(tǒng)計圖中,最喜歡植物園的學(xué)生人數(shù)所對應(yīng)扇形的圓心角是360°×=36°,

故答案為:36;

(4)最喜歡烈士陵園的人數(shù)約有720×=288人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小聰與小明在一張矩形臺球桌ABCD邊打臺球,該球桌長AB=4m,寬AD=2m,點O、E分別為ABCD的中點,以AB、OE所在的直線建立平面直角坐標系。

1)如圖1,MBC上一點;

①小明要將一球從點M擊出射向邊AB,經(jīng)反彈落入D袋,請你畫出AB上的反彈點F的位置;

②若將一球從點M(2,12)擊出射向邊AB上點F(0.5,0),問該球反彈后能否撞到位于(-0.5,0.8)位置的另一球?請說明理由

2)如圖2,在球桌上放置兩個擋板(厚度不計)擋板MQ的端點MAD中點上且MQADMQ=2m,擋板EH的端點H在邊BC上滑動,且擋板EH經(jīng)過DC的中點E;

①小聰把球從B點擊出,后經(jīng)擋板EH反彈后落入D袋,當(dāng)HBC中點時,試證明:DN=BN;

②如圖3,小明把球從B點擊出,依次經(jīng)擋板EH和擋板MQ反彈一次后落入D袋,已知∠EHC=75°,請你直接寫出球的運動路徑BN+NP+PD的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AB邊為直徑的O經(jīng)過點P,C是O上一點,連結(jié)PC交AB于點E,且ACP=60°,PA=PD.

(1)試判斷PD與O的位置關(guān)系,并說明理由;

(2)若點C是弧AB的中點,已知AB=4,求CECP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12)(2017·黃岡)已知:如圖,一次函數(shù)y=-2x1與反比例函數(shù)y的圖象有兩個交點A(1,m)B,過點AAEx垂足為E;過點BBDy,垂足為點D且點D的坐標為(0,-2)連結(jié)DE.

(1)k的值;

(2)求四邊形AEDB的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△AB C沿DE,EF翻折,頂點A,B均落在點O處,且EA與EB重合于線段EO,若∠CDO+∠CFO=98°,則∠C的度數(shù)為( )

A. 40° B. 41° C. 42° D. 43°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板中的兩塊直角三角尺的直角頂點C按如圖方式疊放在一起(其中,∠A=60°,∠D=30°;∠E=B=45°):

1)①若∠DCE=40°,則∠ACB的度數(shù)為  

②若∠ACB=128°,則∠DCE的度數(shù)為  

2)由(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說明理由.

3)當(dāng)∠ACE180°且點E在直線AC的上方時,這兩塊三角尺是否存在一組邊互相平行?若存在,請直接寫出∠ACE角度所有可能的值(不必說明理由);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形中,,,現(xiàn)將矩形折疊使點與點重合,則折痕的長是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把命題如果直角三角形的兩直角邊長分別為ab,斜邊長為c,那么的逆命題改寫成如果……,那么……”的形式:_____________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是一高為4米的平臺,AB是與CD底部相平的一棵樹,在平臺頂C點測得樹頂A點的仰角α=30°,從平臺底部向樹的方向水平前進3米到達點E,在點E處測得樹頂A點的仰角β=60°,求樹高AB(結(jié)果保留根號)

查看答案和解析>>

同步練習(xí)冊答案