年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,矩形ABCD中,P是邊AD上的一動點(diǎn),連接BP、CP,過點(diǎn)B作射線交線段CP的延長線于點(diǎn)E,交AD邊于點(diǎn)M,且使得∠ABE=∠CBP,
如果AB=2,BC=5,AP= x,PM=y.
(1) 說明△ABM∽△APB;并求出y關(guān)于x的函數(shù)關(guān)系式,寫出自變量x的取值范圍;
(2) 當(dāng)AP=4時,求sin∠EBP的值;
(3) 如果△EBC是以∠EBC為底角的等腰三角形,求AP的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
將量角器按如圖所示的方式放置在三角形紙片上,使點(diǎn)C在半圓圓心上,點(diǎn)B在半圓上,邊AB、AC分別交半圓于點(diǎn)E、F,點(diǎn)B、E、F對應(yīng)的讀數(shù)分別為160°、70°、50°,則∠A的度數(shù)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,∠1、∠2、∠3、∠4是五邊形ABCDE的外角,且∠1=
∠2=∠3=∠4=70°,則∠AED的度數(shù)是 ( )
A.100°
B.105°
C.108°
D.110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在梯形ABCD中,AD∥BC,∠D=90°,以AB為直徑作⊙O.
(1)如圖①,⊙O與DC相切于點(diǎn)E,試說明:∠BAE=∠DAE;
(2)如圖②,⊙O與DC交于點(diǎn)E、F.
①圖中哪一個角與∠BAE相等?為什么?
②試探究線段DF與CE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一個正方形和兩個等邊三角形的位置如圖所示,若∠3=50°,則∠1+∠2=( 。
A.90° B.100° C.130° D.180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖①,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與點(diǎn)A、點(diǎn)B重合),分別連接ED、EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把點(diǎn)E叫做四邊形ABCD的邊AB上的相似點(diǎn);如果這三個三角形都相似,我們就把點(diǎn)E叫做四邊形ABCD的邊AB上的強(qiáng)相似點(diǎn),解決問題:
(1)如圖①,∠A=∠B=∠DEC=55°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說明理由;
(2)如圖②,在矩形ABCD中,AB=5,BC=2,且A、B、C、D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(diǎn)(即每個小正方形的頂點(diǎn))上,試在圖②中畫出矩形ABCD的邊AB上的一個強(qiáng)相似點(diǎn)E;
拓展探究:
(3)如圖③,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處.若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個強(qiáng)相似點(diǎn),試探究AB和BC的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com