【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉90°后得Rt△FOE,將線段EF繞點E逆時針旋轉90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.
【答案】8﹣π
【解析】分析:
如下圖,過點D作DH⊥AE于點H,由此可得∠DHE=∠AOB=90°,由旋轉的性質易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,結合∠ABO+∠BAO=90°可得∠BAO=∠DEH,從而可證得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的長,即可由S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF即可求得陰影部分的面積.
詳解:
如下圖,過點D作DH⊥AE于點H,
∴∠DHE=∠AOB=90°,
∵OA=3,OB=2,
∴AB=,
由旋轉的性質結合已知條件易得:DE=EF=AB= ,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,
又∵∠ABO+∠BAO=90°,
∴∠BAO=∠DEH,
∴△DEH≌△BAO,
∴DH=BO=2,
∴S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF
=
=.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一只甲蟲在55的方格(每一格邊長為1)上沿著網格線運動,從A處出發(fā)去看望B、C、D處的甲蟲,規(guī)定:向上向右為正,向下向左為負.例如:從A到B記為:(+1,+3);從C到D 記為:(+1,-2),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向.
(1)填空:記為( , ), 記為( , );
(2)若甲蟲的行走路線為:,請你計算甲蟲走過的路程.
(3)若這只甲蟲去Q的行走路線依次為:A→M(+2,+2),M→N(+2,-1),N→P(-2,+3),P→Q(-1,-2),請依次在圖2標出點M、N、P、Q的位置.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校在踐行“社會主義核心價值觀”演講比賽中,對名列前20名的選手的綜合分數(shù)m進行分組統(tǒng)計,結果如表所示:
組號 | 分組 | 頻數(shù) |
一 | 6≤m<7 | 2 |
二 | 7≤m<8 | 7 |
三 | 8≤m<9 | a |
四 | 9≤m≤10 | 2 |
(1)求a的值;
(2)若用扇形圖來描述,求分數(shù)在8≤m<9內所對應的扇形圖的圓心角大;
(3)將在第一組內的兩名選手記為:A1、A2,在第四組內的兩名選手記為:B1、B2,從第一組和第四組中隨機選取2名選手進行調研座談,求第一組至少有1名選手被選中的概率(用樹狀圖或列表法列出所有可能結果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(2,3)、B(6,3),連接AB.如果對于平面內一點P,線段AB上都存在點Q,使得PQ≤1,那么稱點P是線段AB的“附近點”.
(1)請判斷點D(4.5,2.5)是否是線段AB的“附近點”;
(2)如果點H (m,n)在一次函數(shù)的圖象上,且是線段AB的“附近點”,求m的取值范圍;
(3)如果一次函數(shù)y=x+b的圖象上至少存在一個“附近點”,請直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】微信運動和騰訊公益推出了一個愛心公益活動:一天中走路若步數(shù)達到10000步及以上,則可通過微信運動和騰訊基金會向公益活動捐款,每步可捐0.0002元;若步數(shù)在10000步以下,則不能參與愛心公益捐款.
(1)某天小齊的步數(shù)為15000步,求他這天為愛心公益可捐款多少錢?
(2)己知甲、乙、丙三人某天通過步數(shù)共捐款8.4元,且甲的步數(shù):乙的步數(shù):丙的步數(shù),求這天甲走了多少步?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)軸上有三個點A、B、C,請回答下列問題.
(1)A、B、C三點分別表示 、 、 ;
(2)將點B向左移動3個單位長度后,點B所表示的數(shù)是 ;
(3)將點A向右移動4個單位長度后,點A所表示的數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了比較市場上甲、乙兩種電子鐘每日走時誤差的情況,從這兩種電子鐘中,各隨機抽取10臺進行測試,兩種電子鐘走時誤差的數(shù)據如下表(單位:秒):
編號 類型 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 | 九 | 十 |
甲種電子鐘 | 1 | -3 | -4 | 4 | 2 | -2 | 2 | -1 | -1 | 2 |
乙種電子鐘 | 4 | -3 | -1 | 2 | -2 | 1 | -2 | 2 | -2 | 1 |
(1) 計算甲、乙兩種電子鐘走時誤差的平均數(shù);
(2) 計算甲、乙兩種電子鐘走時誤差的方差;
(3) 根據經驗,走時穩(wěn)定性較好的電子鐘質量更優(yōu).若兩種類型的電子鐘價格相同,請問:你買哪種電子鐘?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別為AB、BC的中點,連接CE、DF,將△CBE沿CE對折,得到△CGE,延長EG交CD的延長線于點H。
(1)求證:CE⊥DF;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)某中學組織學生去福利院慰問,在準備禮品時發(fā)現(xiàn),購買1個甲禮品比購買1個乙禮品多花40元,并且花費600元購買甲禮品和花費360元購買乙禮品的數(shù)量相等.
(1)求甲、乙兩種禮品的單價各為多少元?
(2)學校準備購買甲、乙兩種禮品共30個送給福利院的老人,要求購買禮品的總費用不超過2000元,那么最多可購買多少個甲禮品?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com