【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A2,3)、B6,3),連接AB.如果對于平面內(nèi)一點(diǎn)P,線段AB上都存在點(diǎn)Q,使得PQ1,那么稱點(diǎn)P是線段AB附近點(diǎn)

1)請判斷點(diǎn)D4.5,2.5)是否是線段AB附近點(diǎn)

2)如果點(diǎn)H m,n)在一次函數(shù)的圖象上,且是線段AB附近點(diǎn),求m的取值范圍;

3)如果一次函數(shù)y=x+b的圖象上至少存在一個(gè)附近點(diǎn),請直接寫出b的取值范圍.

【答案】(1)點(diǎn)D(4.5,2.5)是線段AB的“附近點(diǎn)”;

(2)m的取值范圍是;

(3)b的取值范圍是

【解析】

(1)點(diǎn)P是線段AB的“附近點(diǎn)”的定義即可判斷.

(2)首先求出直線y=x-2與線段AB交于(,3)分①當(dāng)m≥時(shí),列出不等式即可解決問題.

(3)如圖,在Rt△AMN中,AM=1,∠MAN=45°,則點(diǎn)M坐標(biāo)(2-,3+),在Rt△BEF中,BE=1,∠EBF=45°,則點(diǎn)E坐標(biāo)(6+,3-),

分別求出直線經(jīng)過點(diǎn)M點(diǎn)E時(shí)的b的值,即可解決問題.

解:(1)∵點(diǎn)D到線段AB的距離是0.5,

∴0.5<1,

∴點(diǎn)D(4.5,2.5)是否是線段AB的“附近點(diǎn)”;

(2)∵點(diǎn)H(m,n)線段AB的“附加點(diǎn)”,點(diǎn)H(m,n)在直線y=x-2上,

∴n=m-2;

直線y=x-2 線段AB交于(,3).

①當(dāng)m≥時(shí),有n=m-2≥3,

又AB∥x軸,∴此時(shí)點(diǎn)H(m、n)到線段AB的距離是n-3.

∴0≤n-3,∴≤m≤5.

綜上所述,≤m≤5.

(3)如圖,在Rt△AMN中,AM=1,∠MAN=45°,則點(diǎn)M坐標(biāo)(2-,3+),

在Rt△BEF中,BE=1,∠ENF=45°,則點(diǎn)E坐標(biāo)(6+,3-),

當(dāng)直線y=x+b經(jīng)過點(diǎn)M時(shí),b=1+,當(dāng)直線y=x+b經(jīng)過點(diǎn)E時(shí),b=-3-,

∴-3-≤b≤1+.

“點(diǎn)睛”本題考查一次函數(shù)綜合題、線段AB的“附近點(diǎn)”的定義等知識(shí),解題的關(guān)鍵是理解題意,學(xué)會(huì)分類討論,學(xué)會(huì)利用特殊點(diǎn)解決問題,屬于中檔壓軸題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,過點(diǎn)C的直線MNAB,DAB邊上一點(diǎn),過點(diǎn)DDEBC,交直線MNE,垂足為F,連接CDBE.

(1)求證:CEAD;

(2)當(dāng)DAB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由;

(3)若DAB中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解題:

按照一定順序排列著的一列數(shù)稱為數(shù)列,排在第一位的數(shù)稱為第1項(xiàng),記為a1,依次類推,排在第n位的數(shù)稱為第n項(xiàng),記為an

一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0).如:數(shù)列1,3,9,27,…為等比數(shù)列,其中a1=1,公比為q=3

則:(1)等比數(shù)列3,6,12,…的公比q ,第4項(xiàng)是

2如果一個(gè)數(shù)列a1,a2a3,a3,…是等比數(shù)列,且公比為q,那么根據(jù)定義可得到:

,……

∴a2=a1q,a3=a2q=a1qq=a1q2,a4=a3q=a1q2q= a1q3,……

由此可得:an= (用a1q的代數(shù)式表示)

(3)若一等比數(shù)列的公比q=2,第2項(xiàng)是10,請求它的第1項(xiàng)與第4項(xiàng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定一種新運(yùn)算:對于任意有理數(shù)ab,規(guī)定abab+2ab+a 如:131×3+2×1×3+116

1)求3(﹣1)的值;

2)若(a+1236,求a的值;

3)若m2x,n=(x3(其中x為有理數(shù)),試比較m、n的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,AB=2,B=60°,MAB的中點(diǎn).動(dòng)點(diǎn)P在菱形的邊上從點(diǎn)B出發(fā),沿B→C→D的方向運(yùn)動(dòng),到達(dá)點(diǎn)D時(shí)停止.連接MP,設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,MP 2=y,則表示yx的函數(shù)關(guān)系的圖象大致為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電信公司有A、B兩種計(jì)費(fèi)方案:月通話費(fèi)用y(元)與通話時(shí)間x(分鐘)的關(guān)系,如圖所示,下列說法中正確的是( 。

A.月通話時(shí)間低于200分鐘選B方案劃算

B.月通話時(shí)間超過300分鐘且少于400分鐘選A方案劃算

C.月通話費(fèi)用為70元時(shí),A方案比B方案的通話時(shí)間長

D.月通話時(shí)間在400分鐘內(nèi),B方案通話費(fèi)用始終是50

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtAOB中,∠AOB=90°,OA=3,OB=2,將RtAOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得RtFOE,將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種流感病毒,有一人患了這種流感,在每輪傳染中一人將平均傳給x人.

1)求第一輪后患病的人數(shù);(用含x的代數(shù)式表示)

2)在進(jìn)入第二輪傳染之前,有兩位患者被及時(shí)隔離并治愈,問第二輪傳染后總共是否會(huì)有21人患病的情況發(fā)生,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與反比例函數(shù))圖像交于點(diǎn)A,將直線向右平移4個(gè)單位,交反比例函數(shù))圖像于點(diǎn)B,交y軸于點(diǎn)C,連結(jié)AB、AC,則△ABC的面積為_______

查看答案和解析>>

同步練習(xí)冊答案