(2010•密云縣)如圖,在四邊形ABCD中,AC平分∠BAD,BC=CD=10,AB=21,AD=9.求AC的長.

【答案】分析:把△ADC沿AC翻折得△AEC,作CF⊥AB于點F.根據(jù)軸對稱的性質(zhì)和線段垂直平分線的性質(zhì),分別求得CF和AF的長,根據(jù)勾股定理求得AC的長即可.
解答:解:∵AC平分∠BAD,
∴把△ADC沿AC翻折得△AEC,
∴AE=AD=9,CE=CD=10=BC.
作CF⊥AB于點F.
∴EF=FB=BE=(AB-AE)=6.
在Rt△BFC(或Rt△EFC)中,由勾股定理得CF=8.
在Rt△AFC中,由勾股定理得AC=17.
∴AC的長為17.
點評:此題要巧妙構造輔助線,綜合運用了軸對稱的性質(zhì)、線段垂直平分線的性質(zhì)以及勾股定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•密云縣)如圖,將腰長為的等腰Rt△ABC(∠C是直角)放在平面直角坐標系中的第二象限,其中點A在y軸上,點B在拋物線y=ax2+ax-2上,點C的坐標為(-1,0).
(1)點A的坐標為______,點B的坐標為______;
(2)拋物線的關系式為______,其頂點坐標為______;
(3)將三角板ABC繞頂點A逆時針方向旋轉90°,到達△AB′C′的位置.請判斷點B′、C′是否在(2)中的拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《一次函數(shù)》(03)(解析版) 題型:解答題

(2010•密云縣)已知一次函數(shù)y=kx-3的圖象經(jīng)過點M(-2,1),求此圖象與x、y軸的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市密云縣中考數(shù)學試卷(解析版) 題型:解答題

(2010•密云縣)如圖,將腰長為的等腰Rt△ABC(∠C是直角)放在平面直角坐標系中的第二象限,其中點A在y軸上,點B在拋物線y=ax2+ax-2上,點C的坐標為(-1,0).
(1)點A的坐標為______,點B的坐標為______;
(2)拋物線的關系式為______,其頂點坐標為______;
(3)將三角板ABC繞頂點A逆時針方向旋轉90°,到達△AB′C′的位置.請判斷點B′、C′是否在(2)中的拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市密云縣中考數(shù)學試卷(解析版) 題型:解答題

(2010•密云縣)已知一次函數(shù)y=kx-3的圖象經(jīng)過點M(-2,1),求此圖象與x、y軸的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市密云縣中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•密云縣二模)已知拋物線y=x2-4x+1,將此拋物線沿x軸方向向左平移4個單位長度,得到一條新的拋物線.
(1)求平移后的拋物線解析式;
(2)由拋物線對稱軸知識我們已經(jīng)知道:直線x=m,即為過點(m,0)平行于y軸的直線,類似地,直線y=m,即為過點(0,m)平行于x軸的直線、請結合圖象回答:當直線y=m與這兩條拋物線有且只有四個交點,實數(shù)m的取值范圍;
(3)若將已知的拋物線解析式改為y=x2+bx+c(b<0),并將此拋物線沿x軸向左平移-b個單位長度,試回答(2)中的問題.

查看答案和解析>>

同步練習冊答案