已知,若滿足,試求的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(1)閱讀理解:配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最大(。┲担
對于任意正實數(shù)a、b,可作如下變形a+b=(
a
)2+(
b
)2
=(
a
)2+(
b
)2
-2
ab
+2
ab
=(
a
-
b
)2
+2
ab
,
又∵(
a
-
b
)2
≥0,∴(
a
-
b
)2
+2
ab
≥0+2
ab
,即a+b≥2
ab

根據(jù)上述內(nèi)容,回答下列問題:在a+b≥2
ab
(a、b均為正實數(shù))中,若ab為定值p,則a+b≥2
p
,當(dāng)且僅當(dāng)a、b滿足
 
時,a+b有最小值2
p

(2)思考驗證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a,DB=2b,試根據(jù)圖形驗證a+b≥2
ab
成立,并指出等號成立時的條件.
(3)探索應(yīng)用:如圖2,已知A為反比例函數(shù)y=
4
x
的圖象上一點,A點的橫坐標(biāo)為1,將一塊三角板的直角頂點放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點D、E,F(xiàn)(0,-3)為y軸上一點,連接DF、EF,求四邊形ADFE面積的最小值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx+c(a>0)交x軸于A、B兩點(A點在B點左側(cè)),交y軸于點C.已知B(8,0),tan∠ABC=
1
2
,△ABC的面積為8.
(1)求拋物線的解析式;
(2)若動直線EF(EF∥x軸)從點C開始,以每秒1個長度單位的速度沿y軸負(fù)方向平移,且交y軸、線段BC于E、F兩點,動點P同時從點B出發(fā),在線段OB上以每秒2個單位的速度向原點O運動.連接FP,設(shè)運動時間t秒.當(dāng)t為何值時,
EF•OP
EF+OP
的值最大,求出最大值;
(3)在滿足(2)的條件下,是否存在t的值,使以P、B、F為頂點的三角形與△ABC相似.若存在,試求出t的值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,若x,y滿足(x+3)2+
y-2
=0
,試求2x+3y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知點P是反比例函數(shù)y=
2
3
x
(x>0)圖象上一個動點,以P為圓心的圓始終與y軸相切,設(shè)切點為A.
(1)如圖1,⊙P運動到與x軸相切,設(shè)切點為K,試判斷四邊形OKPA的形狀,并說明理由.
(2)如圖2,⊙P運動到與x軸相交,設(shè)交點為B,C.當(dāng)四邊形ABCP是菱形時:
①求出點A,B,C的坐標(biāo).
②在過A,B,C三點的拋物線上是否存在點M,使△MBP的面積是菱形ABCP面積的
1
2
?若存在,試求出所有滿足條件的M點的坐標(biāo);若不存在,試說明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案