(2007•永州)在梯形ABCD中,AB∥CD,∠ABC=90°,AB=5,BC=10,tan∠ADC=2.
(1)求DC的長(zhǎng);
(2)E為梯形內(nèi)一點(diǎn),F(xiàn)為梯形外一點(diǎn),若BF=DE,∠FBC=∠CDE,試判斷△ECF的形狀,并說(shuō)明理由.
(3)在(2)的條件下,若BE⊥EC,BE:EC=4:3,求DE的長(zhǎng).

【答案】分析:(1)要求DC的長(zhǎng),過(guò)A點(diǎn)作AG⊥DC,垂足為G,只需求DG+CG,在直角三角形AGD中,可求DG=5,所以DC=10;
(2)由已知可證△DEC≌△BFC,得EC=CF,∠ECD=∠FCB,由∠BCE+∠ECD=90°,得∠ECF=90°,即△ECF是等腰直角三角形;
(3)在(2)的條件下,過(guò)F點(diǎn)作FH⊥BE,要求DE的長(zhǎng),只需求BF的長(zhǎng),在直角三角形BGF中,F(xiàn)G=CE=EG,由勾股定理可求.
解答:解:(1)過(guò)A點(diǎn)作AG⊥DC,垂足為G,
∵AB∥CD,
∴∠BCD=∠ABC=90°,
∴四邊形ABCG為矩形,
∴CG=AB=5,AG=BC=10,
∵tan∠ADG==2,
∴DG=5,
∴DC=DG+CG=10;

(2)∵DE=BF,∠FBC=∠CDE,BC=DC,
∴△DEC≌△BFC,
∴EC=CF,∠ECD=∠FCB,
∵∠BCE+∠ECD=90°,∠ECF=90°,
∴△ECF是等腰直角三角形;

(3)過(guò)F點(diǎn)作FH⊥BE,
∵BE⊥EC,CF⊥CE,CE=CF,
∴四邊形ECFH是正方形,
∵BE:EC=4:3,∠BEC=90°,
∴BC2=BE2+EC2,
∴EC=6,BE=8,
∴BH=BE-EH=2,
∴DE=BF=
點(diǎn)評(píng):本題考查了全等三角形的判定,直角三角形的性質(zhì)以及三角函數(shù)和勾股定理的綜合運(yùn)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《數(shù)據(jù)分析》(03)(解析版) 題型:選擇題

(2007•永州)在一周內(nèi)體育老師對(duì)某運(yùn)動(dòng)員進(jìn)行了5次百米短跑測(cè)試,若想了解該運(yùn)動(dòng)員的成績(jī)是否穩(wěn)定,老師需要知道他5次成績(jī)的( )
A.平均數(shù)
B.方差
C.中位數(shù)
D.眾數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(13)(解析版) 題型:解答題

(2007•永州)在梯形ABCD中,AB∥CD,∠ABC=90°,AB=5,BC=10,tan∠ADC=2.
(1)求DC的長(zhǎng);
(2)E為梯形內(nèi)一點(diǎn),F(xiàn)為梯形外一點(diǎn),若BF=DE,∠FBC=∠CDE,試判斷△ECF的形狀,并說(shuō)明理由.
(3)在(2)的條件下,若BE⊥EC,BE:EC=4:3,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年廣東省廣州市天河區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

(2007•永州)在一周內(nèi)體育老師對(duì)某運(yùn)動(dòng)員進(jìn)行了5次百米短跑測(cè)試,若想了解該運(yùn)動(dòng)員的成績(jī)是否穩(wěn)定,老師需要知道他5次成績(jī)的( )
A.平均數(shù)
B.方差
C.中位數(shù)
D.眾數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年廣東省廣州市海珠區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2007•永州)在梯形ABCD中,AB∥CD,∠ABC=90°,AB=5,BC=10,tan∠ADC=2.
(1)求DC的長(zhǎng);
(2)E為梯形內(nèi)一點(diǎn),F(xiàn)為梯形外一點(diǎn),若BF=DE,∠FBC=∠CDE,試判斷△ECF的形狀,并說(shuō)明理由.
(3)在(2)的條件下,若BE⊥EC,BE:EC=4:3,求DE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案