【題目】定義:如果一元二次方程滿足,那么我們稱這個(gè)方程為鳳凰方程.已知鳳凰方程,且有兩個(gè)相等的實(shí)數(shù)根,則下列結(jié)論正確的是 ( )

A. B. C. D.

【答案】B

【解析】

因?yàn)榉匠逃袃蓚(gè)相等的實(shí)數(shù)根,所以根的判別式△=b2-4ac=0,又a+b+c=0,即b=-a-c,代入b2-4ac=0(-a-c)2-4ac =0,化簡即可得到ac的關(guān)系.

∵一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)相等的實(shí)數(shù)根, ∴△=b2-4ac=0,

a+b+c=0,即b=-a-c, 代入b2-4ac=0得(-a-c)2-4ac=0,

即(-a-c)2-4ac=a2+2ac+c2-4ac=a2-2ac+c2=(a-c)2=0,∴a=c. 故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓中有折線,,,則弦的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,AB∥CD,∠A=90°,E在AD上,且CE平分∠BCD,BE平分∠ABC,則下列關(guān)系式中成立的有( )

; ②;③ ;④; ⑤

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等邊ABC中,點(diǎn)D為射線BA上一點(diǎn),作DE=DC,交直線BC于點(diǎn)E,ABC的平分線BFCD于點(diǎn)F,過點(diǎn)AAHCDH,當(dāng)EDC=30,CF=,則DH=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為豐富居民業(yè)余生活,某居民區(qū)組建籌委會(huì),該籌委會(huì)動(dòng)員居民自愿集資建立一個(gè)書刊閱覽室.經(jīng)預(yù)算,一共需要籌資30 000元,其中一部分用于購買書桌、書架等設(shè)施,另一部分用于購買書刊.

(1)籌委會(huì)計(jì)劃,購買書刊的資金不少于購買書桌、書架等設(shè)施資金的3倍,問最多用多少資金購買書桌、書架等設(shè)施?

(2)經(jīng)初步統(tǒng)計(jì),有200戶居民自愿參與集資,那么平均每戶需集資150元.鎮(zhèn)政府了解情況后,贈(zèng)送了一批閱覽室設(shè)施和書籍,這樣,只需參與戶共集資20 000元.經(jīng)籌委會(huì)進(jìn)一步宣傳,自愿參與的戶數(shù)在200戶的基礎(chǔ)上增加了a%(其中).則每戶平均集資的資金在150元的基礎(chǔ)上減少了%,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著智能手機(jī)的普及,微信搶紅包已成為春節(jié)期間人們最喜歡的活動(dòng)之一,某校七年級(jí)(1)班班長對(duì)全班50名學(xué)生在春節(jié)期間所搶的紅包金額進(jìn)行統(tǒng)計(jì),并繪制成了統(tǒng)計(jì)圖.請(qǐng)根據(jù)以上信息回答:

1)該班同學(xué)所搶紅包金額的眾數(shù)是______,

中位數(shù)是______;

2)該班同學(xué)所搶紅包的平均金額是多少元?

3)若該校共有18個(gè)班級(jí),平均每班50人,請(qǐng)你估計(jì)該校學(xué)生春節(jié)期間所搶的紅包總金額為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形內(nèi)接于的直徑,過點(diǎn),交的延長線于點(diǎn),平分.

(1)求證:的切線;

(2)已知cm,cm,求的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與軸交于點(diǎn),與軸交于點(diǎn)則此拋物線對(duì)此函數(shù)的表達(dá)式為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)y=x2+與y=-x2+k的圖象的頂點(diǎn)重合,則下列結(jié)論不正確的是( )

A. 這兩個(gè)函數(shù)圖象有相同的對(duì)稱軸 B. 這兩個(gè)函數(shù)圖象的開口方向相反

C. 方程-x2+k=0沒有實(shí)數(shù)根 D. 二次函數(shù)y=-x2+k的最大值為

查看答案和解析>>

同步練習(xí)冊(cè)答案