【題目】ABC中,∠C=90°,AB=13,AC=12,以B為圓心,5為半徑的圓與直線AC的位置關(guān)系是(

A. 相切B. 相交C. 相離D. 不能確定

【答案】A

【解析】

此題首先應(yīng)求得圓心到直線的距離,即是直角三角形直角邊BC的長;再根據(jù)直線和圓的位置關(guān)系與數(shù)量之間的聯(lián)系進(jìn)行判斷.
dr,則直線與圓相交;若d=r,則直線于圓相切;若dr,則直線與圓相離.

解:∵在ABC中,∠C=90°,AB=13AC=12,
∴根據(jù)勾股定理求得直角邊BC5;
則圓心到直線的距離是5
∵⊙B的半徑是5,
∴以B為圓心,5為半徑的圓與直線AC的位置關(guān)系是相切.
故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)正數(shù)的兩個(gè)平方根分別是2a-37,a=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形ABCD沿x軸負(fù)方向平移a個(gè)單位長度后,點(diǎn)C恰好落在雙曲線上,則a的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時(shí),辦公樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線與地面夾角是45°時(shí),辦公樓頂A在地面上的影子F與墻角C有27米的距離(BF,C在一條直線上).

(1)求辦公樓AB的高度;

(2)若要在A,E之間掛一些彩旗,請(qǐng)你求出A,E之間的距離.

(參考數(shù)據(jù):sin22°cos22°,tan22°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列一組圖形中點(diǎn)的個(gè)數(shù),其中第1個(gè)圖中共有4個(gè)點(diǎn),第2個(gè)圖中共有10個(gè)點(diǎn),第3個(gè)圖中共有19個(gè)點(diǎn),…按此規(guī)律第7個(gè)圖中共有點(diǎn)的個(gè)數(shù)是( )

A.46
B.85
C.72
D.66

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)1,0,﹣1,﹣2中,最小的數(shù)是(
A.1
B.0
C.﹣1
D.﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若多項(xiàng)式4a2M能用平方差公式因式分解,則單項(xiàng)式M=__________.(寫出一個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣4x+m﹣1=0有兩個(gè)相等的實(shí)數(shù)根,求m的值及方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形DEF是三角形ABC沿射線BC平移的得到的,BE=2,DE與AC交于點(diǎn)G,且滿足DG=2GE.若三角形CEG的面積為1,CE=1,則點(diǎn)G到AD的距離為

查看答案和解析>>

同步練習(xí)冊(cè)答案