【題目】如圖,在四邊形中,點,分別是的中點,分別是的中點,滿足什么條件時,四邊形是菱形?請證明你的結(jié)論.

【答案】時,四邊形是菱形.證明見解析

【解析】

根據(jù)菱形的定義來求解.E、G分別是AD,BD的中點,那么EG就是三角形ADB的中位線,同理,HF是三角形ABC的中位線,因此EG、HF同時平行且相等于AB,因此EG∥=HF.

因此四邊形EHFG是平行四邊形,E、HAD,AC的中點,那么EH=CD,要想證明EHFG是菱形,那么就需證明EG=EH,那么就需要AB、CD滿足AB=CD的條件

時,四邊形是菱形.

證明:分別是的中點,

,同理,

四邊形是平行四邊形

,又可同理證得

,

,

四邊形是菱形.

(用分析法由四邊形是菱形推出滿足條件也對)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,其對稱軸為直線x=﹣1,給出下列結(jié)果:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.

則正確的結(jié)論是(

A. (1)(2)(3)(4) B. (2)(4)(5) C. (2)(3)(4) D. (1)(4)(5)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一幅長為80cm,寬為50cm的矩形風景畫的四周鑲一條相同寬度的金色紙邊,制成一幅矩形掛圖,如圖所示,如果要使整個掛圖的面積是5400cm2,設金色紙邊的寬為xcm,那么x滿足的方程是( )

A. (80+2x)(50+2x)=5400 B. (80-x)(50-x)=5400

C. (80+x)(50+x)=5400 D. (80-2x)(50-2x)=5400

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙OBC于點D,交AB于點E,過點DDFAB,垂足為F,連接DE.

(1)求證:直線DF與⊙O相切;

(2)求證:BF=EF;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC ,BAC=9 0°,AB=3,AC=4, D BC 的中點ABD 沿 AD 翻折得到AED, CE,則線段 CE 的長等于

A. 2 B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3,延長CB至點M,使SABM=,過點BBNAM,垂足為N,O是對角線AC,BD的交點,連接ON,則ON的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠MAN=120°,AC平分∠MAN

1)在圖1中,若∠ABC=ADC=90°,求證:AB+AD=AC

2)在圖2中,若∠ABC+ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段是直線上一動點,點分別為,的中點,對下列各值:①線段的長;②的周長;③的面積;④直線,之間的距離;⑤的大。渲胁粫S點的移動而改變的是_____.(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,直線ABx軸于點A0),交y軸于點B0),且b滿足

1)求證:OA=OB;

2)如圖1,若C的坐標為(-1,0),且AHBC于點H,AHOB于點P,試求點P的坐標;

3)如圖2,連接OH,求證:∠OHP=45°.

查看答案和解析>>

同步練習冊答案