【題目】如圖,在平面直角坐標(biāo)系中,直線y=2x﹣2與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(2,n),在第三象限交于點(diǎn)B,過(guò)點(diǎn)B作BC⊥x軸于C,連接AC.
(1)求反比例函數(shù)的解析式;
(2)求△ABC的面積;
(3)根據(jù)圖象直接寫出不等式的解集.
【答案】(1)y=;(2)6;(3)0<x<2或x<﹣1
【解析】
(1)根據(jù)點(diǎn)A(2,n)在直線y=2x﹣2上求出n的值即可得出反比例函數(shù)的解析式;
(2)聯(lián)立方程求得B的坐標(biāo),根據(jù)三角形面積公式解答即可;
(3)直接根據(jù)兩函數(shù)的圖象即可得出不等式2x-2<的解集.
解:(1)∵直線y=2x﹣2與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(2,n),
∴n=4﹣2=2,
∴k=2n=2×2=4,
∴此反比例函數(shù)的解析式為:y=;
(2)解得 或,
∴B(﹣1,﹣4),
∵BD⊥x軸于C,
∴BC=4,C(﹣1,0)
∵A(2,2),
∴S△ABC=×4×(2+1)=6;
(3)∵A(2,2),B(﹣1,﹣4),
由函數(shù)圖象可知,當(dāng)0<x<2或x<﹣1是直線在雙曲線的下方,
∴不等式2x-2<的解集為0<x<2或x<﹣1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知點(diǎn)D、E、F分別為邊BC、AD、CE的中點(diǎn),若△ABC的面積為16,則圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù).
(1)該二次函數(shù)圖象的對(duì)稱軸是;
(2)若該二次函數(shù)的圖象開口向上,當(dāng)時(shí),函數(shù)圖象的最高點(diǎn)為,最低點(diǎn)為,點(diǎn)的縱坐標(biāo)為,求點(diǎn)和點(diǎn)的坐標(biāo);
(3)對(duì)于該二次函數(shù)圖象上的兩點(diǎn),,設(shè),當(dāng)時(shí),均有,請(qǐng)結(jié)合圖象,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:
如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A與點(diǎn)B的坐標(biāo)分別是,.
對(duì)于坐標(biāo)平面內(nèi)的一點(diǎn)P,給出如下定義:如果,則稱點(diǎn)P為線段AB的“等角點(diǎn)”顯然,線段AB的“等角點(diǎn)”有無(wú)數(shù)個(gè),且A、B、P三點(diǎn)共圓.
設(shè)A、B、P三點(diǎn)所在圓的圓心為C,直接寫出點(diǎn)C的坐標(biāo)和的半徑;
軸正半軸上是否有線段AB的“等角點(diǎn)”?如果有,求出“等角點(diǎn)”的坐標(biāo);如果沒有,請(qǐng)說(shuō)明理由;
當(dāng)點(diǎn)P在y軸正半軸上運(yùn)動(dòng)時(shí),是否有最大值?如果有,說(shuō)明此時(shí)最大的理由,并求出點(diǎn)P的坐標(biāo);如果沒有請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx﹣12的圖象交x軸于A(﹣3,0),B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.點(diǎn)D是拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)D的橫坐標(biāo)為m,并且當(dāng)m≤x≤m+5時(shí),對(duì)應(yīng)的函數(shù)值y滿足﹣m,求m的值;
(3)若點(diǎn)D在第四象限內(nèi),過(guò)點(diǎn)D作DE∥y軸交BC于E,DF⊥BC于F.線段EF的長(zhǎng)度是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值及相應(yīng)點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2+bx﹣3(b是常數(shù))經(jīng)過(guò)點(diǎn)A(﹣1,0),(1)求拋物線的解析式_____.(2)P(m,t)為拋物線上的一個(gè)動(dòng)點(diǎn),P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P′,當(dāng)點(diǎn)P′落在第二象限內(nèi),P′A2取得最小值時(shí),求m的值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視臺(tái)攝制組乘船往返于A碼頭和B碼頭進(jìn)行拍攝,在A、B兩碼頭間設(shè)置拍攝中心C.在往返過(guò)程中,假設(shè)船在A、B、C處均不停留,船離開B碼頭的距離s(千米)與航行的時(shí)間t(小時(shí))之間的函數(shù)關(guān)系式如圖所示.根據(jù)圖象信息,解答下列問(wèn)題:
(1)求船從B碼頭返回A碼頭時(shí)的速度及返回時(shí)s關(guān)于t的函數(shù)表達(dá)式.
(2)求水流的速度.
(3)若拍攝中心C設(shè)在離A碼頭12千米處,攝制組在拍攝中心分兩組拍攝,其中一組乘橡皮艇漂流到B碼頭處,另一組同時(shí)乘船到達(dá)A碼頭后馬上返回,求兩攝制組相遇時(shí)離拍攝中心C的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了豐富校園文化生活,某校計(jì)劃在午間校園廣播臺(tái)播放“百家講壇”的部分內(nèi)容為了了解學(xué)生的喜好,抽取若干名學(xué)生進(jìn)行問(wèn)卷調(diào)查(每人只選一項(xiàng)內(nèi)容),整理調(diào)查結(jié)果,繪制統(tǒng)計(jì)圖如下:
請(qǐng)根據(jù)統(tǒng)計(jì)圖提供的信息回答以下問(wèn)題:
(1)這一調(diào)查屬于_______(選填“抽樣調(diào)查”或“普查”),抽取的學(xué)生數(shù)為_____名;
(2)估計(jì)喜歡收聽易中天《品三國(guó)》的學(xué)生約占全校學(xué)生的____%(精確到小數(shù)點(diǎn)后一位);
(3)已知該校女學(xué)生共有1800名,則該校喜歡收聽劉心武評(píng)《紅樓夢(mèng)》的女學(xué)生大約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是矩形內(nèi)部的一定點(diǎn),是邊上一動(dòng)點(diǎn),連接并延長(zhǎng)與矩形的一邊交于點(diǎn),連接.已知,設(shè),兩點(diǎn)間的距離為,,兩點(diǎn)間的距離為,,兩點(diǎn)間的距離為.小欣根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù),隨自變量的變化而變化的規(guī)律進(jìn)行了探究.下面是小欣的探究過(guò)程,請(qǐng)補(bǔ)充完整;
(1)按照如表中自變量的值進(jìn)行取點(diǎn)、畫圖、測(cè)量,分別得到了,與的幾組對(duì)應(yīng)值;
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
6.30 | 5.40 | ______ | 4.22 | 3.13 | 3.25 | 4.52 | |
6.30 | 6.34 | 6.43 | 6.69 | 5.75 | 4.81 | 3.98 |
(2)在同一平面直角坐標(biāo)系中,描出以補(bǔ)全后的表中各組對(duì)應(yīng)值所對(duì)應(yīng)的點(diǎn),并畫出函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問(wèn)題:當(dāng)為等腰三角形時(shí),的長(zhǎng)度約為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com