已知兩圓的半徑分別為6和2,兩圓心的距離為5,那么這兩個(gè)圓的公共點(diǎn)的個(gè)數(shù)是 ( 。   
A.0B.1C.2D.不能確定
C

試題分析:兩圓的半徑為6和2,兩圓心的距離為5,所以,兩圓相交,有兩個(gè)交點(diǎn).故選C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在邊長為1的正方形組成的網(wǎng)格中建立直角坐標(biāo)系,△AOB的頂點(diǎn)均在格點(diǎn)上,點(diǎn)O為原點(diǎn),點(diǎn)A、B的坐標(biāo)分別是A(3,2)、B(1,3).

(1)將△AOB向下平移3個(gè)單位后得到△A1O1B1,則點(diǎn)B1的坐標(biāo)為      
(2)將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A2OB2,請(qǐng)?jiān)趫D中作出△△A2OB2,并求出這時(shí)點(diǎn)A2的坐標(biāo)為      ;
(3)在(2)中的旋轉(zhuǎn)過程中,線段OA掃過的圖形的面積      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

點(diǎn)P在圖形M上, 點(diǎn)Q在圖形N上,記為線段PQ長度的最大值,為線段PQ長度的最小值,圖形M,N的平均距離
(1)在平面直角坐標(biāo)系中,⊙O是以O(shè)為圓心,2的半徑的圓,且A,B,求;(直接寫出答案即可)
(2)半徑為1的⊙C的圓心C與坐標(biāo)原點(diǎn)O重合,直線軸交于點(diǎn)D,與軸交于點(diǎn)F,記線段DF為圖形G,求;
(3)在(2)的條件下,如果⊙C的圓心C從原點(diǎn)沿軸向右移動(dòng),⊙C的半徑不變,且,求圓心C的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知A、B、C是半徑為2的圓O上的三個(gè)點(diǎn),其中點(diǎn)A是弧BC的中點(diǎn),連接AB、AC,點(diǎn)D、E分別在弦AB、AC上,且滿足AD=CE.

(1)求證:OD=OE;
(2)連接BC,當(dāng)BC=時(shí),求∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

問題探究:
(1)請(qǐng)?jiān)趫D①中作出兩條直線,使它們將圓面四等分;

(2)如圖②,M是正方形ABCD內(nèi)一定點(diǎn),請(qǐng)?jiān)趫D②中作出兩條直線(要求其中一條直線必須過點(diǎn)M)使它們將正方形ABCD的面積四等分,并說明理由.

問題解決:
(3)如圖③,在四邊形ABCD中,AB∥CD,AB+CD=BC,點(diǎn)P是AD的中點(diǎn),如果AB=a,CD=b,且b>a,那么在邊BC上是否存在一點(diǎn)Q,使PQ所在直線將四邊形ABCD的面積分成相等的兩部分?如若存在,求出BQ的長;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,A、B為⊙O上的兩個(gè)定點(diǎn),P是⊙O上的動(dòng)點(diǎn)(P不與A、B重合),我們稱∠APB是⊙O上關(guān)于A、B的滑動(dòng)角.若⊙O的半徑是1,,則∠APB的取值范圍為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)扇形的弧長是20πcm,面積是240πcm,則扇形的半徑是____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知∠ACB=120º,則∠AOB=_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖.AB是⊙O的直徑,E是。翪的中點(diǎn),OE交BC于點(diǎn)D,OD=3,DE=2,則AD的長為(    ).
A.B.3C.8D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案