【題目】
如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都是m的大正方形,兩塊是邊長都為n的小正方形,五塊是長為m,寬為n的相同的小矩形,且m>n.(以上長度單位:cm)
(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為 ;
(2)若每塊小矩形的面積為10cm,四個正方形的面積和為58cm,試求圖中所有裁剪線(虛線部分)長之和.
【答案】(1)(m+2n)(2m+n);(2)42cm.
【解析】試題分析:(1) 觀察圖形,根據(jù)矩形面積的兩種表示法即可得答案;(2)根據(jù)每塊小矩形的面積為10cm2,四個正方形的面積和為58cm2,可得2m2+2n2=58,mn=10,由此求得m+n=7,從而求得圖中所有裁剪線(虛線部分)長之和.
試題解析:
(1)由圖形的面積可得:(m+2n)(2m+n);
(2)依題意得,2m2+2n2=58,mn=10,
∴m2+n2=29,
∵(m+n)2=m2+2mn+n2,
∴(m+n)2=29+20=49,
∵m+n>0,∴m+n=7,
∴圖中所有裁剪線(虛線部分)長之和為42cm.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=8,AC=6,AD、AE分別是其角平分線和中線,過點C作CG⊥AD于F,交AB于G,連接EF,求線段EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中點.點P以每秒1個單位長度的速度從點A出發(fā),沿AD向點D運動;點Q同時以每秒3個單位長度的速度從點C出發(fā),沿CB向點B運動.點P停止運動時,點Q也隨之停止運動.當運動時間t為多少秒時,以點P,Q,E,D為頂點的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:
小紅同學在學習過程中遇到這樣一道計算題“計算4×3.142﹣4×3.14×3.28+3.282”,他覺得太麻煩,估計應該有可以簡化計算的方法,就去請教崔老師.崔老師說:你完成下面的問題后就可能知道該如何簡化計算啦!
獲取新知:
請你和小紅一起完成崔老師提供的問題:
(1)填寫下表:
x=﹣1,y=1 | x=1,y=0 | x=3,y=2 | x=1,y=1 | x=5,y=3 | |
A=2x﹣y | ﹣3 | 2 | 4 | 1 | 7 |
B=4x2﹣4xy+y2 | 9 | 4 |
|
|
|
(2)觀察表格,你發(fā)現(xiàn)A與B有什么關(guān)系?
解決問題:
(3)請結(jié)合上述的有關(guān)信息,計算4×3.142﹣4×3.14×3.28+3.282.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線m:y=ax2﹣6ax+c(a>0)的頂點A在x軸上,并過點B(0,1),直線n:y=﹣x+與x軸交于點D,與拋物線m的對稱軸l交于點F,過B點的直線BE與直線n相交于點E(﹣7,7).
(1)求拋物線m的解析式;
(2)P是l上的一個動點,若以B,E,P為頂點的三角形的周長最小,求點P的坐標;
(3)拋物線m上是否存在一動點Q,使以線段FQ為直徑的圓恰好經(jīng)過點D?若存在,求點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】王霞和爸爸、媽媽到人民公園游玩,回到家后,她利用平面直角坐標系畫出了公園的景區(qū)地圖,如圖所示.可是她忘記了在圖中標出原點和x軸.y軸.只知道游樂園D的坐標為(2,﹣2),請你幫她畫出坐標系,并寫出其他各景點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中任意一點p(x,y)經(jīng)平移后對應點為p1(x+5,y+3),將△ABC作同樣的平移得到△A1B1C1.
(1)畫出△A1B1C1;
(2)求A1,B1,C1的坐標;
(3)寫出平移的過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC,BD相交于點O,點E,F(xiàn)分別在OA,OC上
(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請你從中選取兩個條件證明△BEO≌△DFO;
(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com