【題目】小超騎電動車、小生騎自行車分別同時從甲、乙兩地出發(fā),勻速相向而行,在分鐘時兩人相遇,在行駛的過程中,小超到達(dá)乙地后停留一會,再按原路原速返回甲地,小生一直勻速騎自行車后,與小超同時到達(dá)甲地,如圖表示兩人距乙地的距離與時間之間的函數(shù)關(guān)系.

1)小超騎車的速度_ ,小生騎車的速度 ;

2)求線段的解析式;

3)如果小超不在乙地停留,按原路原速直接返回,問在小超回到甲地之前,小超何時能追上小生?

【答案】1)小生的速度為小超的速度為;(2)線段的解析式為;(3小時后小超能追上小生.

【解析】

根據(jù)題意可得:小生的速度為

分鐘小時,

小超的速度為

答:小生的速度為小超的速度為

即點(diǎn)的坐標(biāo)為,

設(shè)直線的解析式為:

把點(diǎn)和點(diǎn)代入可得:

解得

線段的解析式為

設(shè)小時后小超能追上小生,根據(jù)題意得:

解得

答: 小時后小超能追上小生.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為二次函數(shù)圖象,直線與拋物線交于兩點(diǎn),兩點(diǎn)橫坐標(biāo)分別為根據(jù)函數(shù)圖象信息有下列結(jié)論:

;

②若對于的任意值都有,;

;

;

⑤當(dāng)為定值時若變大,則線段變長

其中,正確的結(jié)論有__________(寫出所有正確結(jié)論的番號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為鼓勵市民節(jié)約用水,某市自來水公司按分段收費(fèi)標(biāo)準(zhǔn)收費(fèi),右圖反映的是每月收水費(fèi)y(元)與用水量x(噸)之間的函數(shù)關(guān)系

1)小紅家五月份用水8噸,應(yīng)交水費(fèi)_____元;

2)按上述分段收費(fèi)標(biāo)準(zhǔn),小紅家三、四月份分別交水費(fèi)36元和19.8元,問四月份比三月份節(jié)約用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACBC,DCEC,AC=BCDC=EC,圖中AE、BD有怎樣的關(guān)系(數(shù)量關(guān)系和位置關(guān)系)?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,內(nèi)自由移動,若的半徑為且圓心O內(nèi)所能到達(dá)的區(qū)域的面積為的周長為_______________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】423日為世界閱讀日,為響應(yīng)黨中央倡導(dǎo)全民閱讀,建設(shè)書香社會的號召,某校團(tuán)委組織了一次全校學(xué)生參加的讀書活動大賽,為了了解本次大賽的成績,校團(tuán)委隨機(jī)抽取了部分學(xué)生的成績(成績取整數(shù),總分100)作為樣本進(jìn)行統(tǒng)計,繪制了如下不完整的頻數(shù)頻率分布表和頻數(shù)分布直方圖:

根據(jù)所給信息,解答下列問題

(1)抽取的樣本容量是

(2)補(bǔ)全頻數(shù)分布直方圖,這200名學(xué)生成績的中位數(shù)會落在 分?jǐn)?shù)段;

(3)全校有1200名學(xué)生參加比賽,若得分為90分及以上為優(yōu)秀,請你估計全校參加比賽成績優(yōu)秀的學(xué)生人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=DB,∠1=∠2,請問添加下面哪個條件不能判斷△ABC≌△DBE的是(  )

A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一枚跳棋放在七邊形ABCDEFG的頂點(diǎn)A處,按順時針方向移動這枚跳棋2020次.移動規(guī)則是:第k次移動k個頂點(diǎn)(如第一次移動1個頂點(diǎn),跳棋停留在B處,第二次移動2個頂點(diǎn),跳棋停留在D處),按這樣的規(guī)則,在這2020次移動中,跳棋不可能停留的頂點(diǎn)是( 。

A.C、EB.E、FC.G、CED.E、CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角板是我們學(xué)習(xí)數(shù)學(xué)的好幫手.將一對直角三角板如圖放置,點(diǎn)CFD的延長線上,點(diǎn)BED上,ABCF,∠F=∠ACB90°,∠E45°,∠A60°,AC10,則CD的長度是_____.

查看答案和解析>>

同步練習(xí)冊答案