【題目】如圖,已知平行四邊形ABCD中,∠ABC的平分線與邊CD的延長(zhǎng)線交于點(diǎn)E,與AD交于點(diǎn)F,且AF=DF,
①求證:AB=DE;
②若AB=3,BF=5,求△BCE的周長(zhǎng).
【答案】①見(jiàn)解析②22
【解析】
①利用平行四邊形的性質(zhì)∠A=∠FDE,∠ABF=∠E,結(jié)合AF=DF,可判定△ABF≌△DEF,即可得出AB=DE;
②利用角平分線以及平行線的性質(zhì),即可得到AF=AB=3,進(jìn)而得出BC=AD=6,CD=AB=3,依據(jù)△ABF≌△DEF,可得DE=AB=3,EF=BF=5,進(jìn)而得到△BCE的周長(zhǎng).
解:如圖①∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∴∠A=∠FDE,∠ABF=∠E,
∵AF=DF,
∴△ABF≌△DEF,
∴AB=DE;
②∵BE平分∠ABC,
∴∠ABF=∠CBF,
∵AD∥BC,
∴∠CBF=∠AFB,
∴∠ABF=∠AFB,
∴AF=AB=3,
∴AD=2AF=6
∵四邊形ABCD是平行四邊形,
∴BC=AD=6,CD=AB=3,
∵△ABF≌△DEF,
∴DE=AB=3,EF=BF=5,
∴CE=6,BE=EF+BF=10,
∴△BCE的周長(zhǎng)=BC+CE+BE=10+6+6=22.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)七年級(jí)A班有50人,某次活動(dòng)中分為三組,第一組有(3a+4b+2)人,第二組比第一組的一半多6人.
(1)求第三組的人數(shù);(用含a,b的整式表示)
(2)試判斷當(dāng)a=1,b=2時(shí),是否滿足題意.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】體育課上,甲、乙兩個(gè)小組進(jìn)行定點(diǎn)投籃對(duì)抗賽,每組10人,每人投10次.下表是甲組成績(jī)統(tǒng)計(jì)表:
投進(jìn)個(gè)數(shù) | 10個(gè) | 8個(gè) | 6個(gè) | 4個(gè) |
人數(shù) | 1個(gè) | 5人 | 2人 | 2人 |
(1)請(qǐng)計(jì)算甲組平均每人投進(jìn)個(gè)數(shù);
(2)經(jīng)統(tǒng)計(jì),兩組平均每人投進(jìn)個(gè)數(shù)相同且乙組成的方差為3.2.若從成績(jī)穩(wěn)定性角度看,哪一組表現(xiàn)更好?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜生產(chǎn)基地在氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種在自然光明且溫度為18℃的條件下生長(zhǎng)最快的新品種,如圖是某天恒溫系統(tǒng)從開(kāi)啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(℃)隨時(shí)間x(小時(shí))變化的函數(shù)圖象,其中BC段是雙曲線的一部分.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18℃的時(shí)間有多少小時(shí)?
(2)求k的值;
(3)當(dāng)x=15時(shí),大棚內(nèi)的溫度約為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是線段AB上的一點(diǎn),點(diǎn)M、N分別是線段AP、PB的中點(diǎn).
(1)如圖1,若點(diǎn)P是線段AB的中點(diǎn),且MP=4cm,求線段AB的長(zhǎng);
(2)如圖2,若點(diǎn)P是線段AB上的任一點(diǎn),且AB=12cm,求線段MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C,且OA=1,OB=3,頂點(diǎn)為D,對(duì)稱軸交x軸于點(diǎn)Q.
(1)求拋物線對(duì)應(yīng)的二次函數(shù)的表達(dá)式;
(2)點(diǎn)P是拋物線的對(duì)稱軸上一點(diǎn),以點(diǎn)P為圓心的圓經(jīng)過(guò)A、B兩點(diǎn),且與直線CD相切,求點(diǎn)P的坐標(biāo);
(3)在拋物線的對(duì)稱軸上是否存在一點(diǎn)M,使得△DCM∽△BQC?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間,甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲車出發(fā)至甲車到達(dá)C地的過(guò)程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時(shí)間t(h)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①甲車出發(fā)2h時(shí),兩車相遇;②乙車出發(fā)1.5h時(shí),兩車相距170km;③乙車出發(fā)h時(shí),兩車相遇;④甲車到達(dá)C地時(shí),兩車相距40km.其中正確的是______(填寫所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工程交由甲、乙兩個(gè)工程隊(duì)來(lái)完成,已知甲工程隊(duì)單獨(dú)完成需要60天,乙工程隊(duì)單獨(dú)完成需要40天
(1)若甲工程隊(duì)先做30天后,剩余由乙工程隊(duì)來(lái)完成,還需要用時(shí) 天
(2)若甲工程隊(duì)先做20天,乙工程隊(duì)再參加,兩個(gè)工程隊(duì)一起來(lái)完成剩余的工程,求共需多少天完成該工程任務(wù)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com