【題目】如圖,點(diǎn)P是線段AB上的一點(diǎn),點(diǎn)M、N分別是線段AP、PB的中點(diǎn).
(1)如圖1,若點(diǎn)P是線段AB的中點(diǎn),且MP=4cm,求線段AB的長;
(2)如圖2,若點(diǎn)P是線段AB上的任一點(diǎn),且AB=12cm,求線段MN的長.
【答案】(1)16;(2)6.
【解析】
(1)首先根據(jù)點(diǎn)M是線段AP的中點(diǎn),MP=4cm,求出AP的長度是多少;然后根據(jù)點(diǎn)P是線段AB的中點(diǎn),求出線段AB的長是多少即可.
(2)根據(jù)點(diǎn)M是線段AP的中點(diǎn),點(diǎn)N是線段PB的中點(diǎn),可得MP=AP,PN=PB,據(jù)此判斷出MN=AB,求出線段MN的長是多少即可.
解:(1)∵M(jìn)是線段AP的中點(diǎn),MP=4cm,
∴AP=2MP=2×4=8(cm).
又∵點(diǎn)P是線段AB的中點(diǎn),
∴AB=2AP=2×8=16(cm).
(2)∵點(diǎn)M是線段AP的中點(diǎn),點(diǎn)N是線段PB的中點(diǎn),
∴MP=AP,PN=PB,
∴MN=MP+PN=AP+PB=(AP+PB)=AB.
∵AB=12cm,
∴MN=12÷2=6(cm).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC、BD交于點(diǎn)O,已知O是AC的中點(diǎn),AE=CF,DF∥BE.
(1)求證:△BOE≌△DOF;
(2)若OD=AC,則四邊形ABCD是什么特殊四邊形?請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,BE平分∠ABC交CD的延長線于點(diǎn)E,作CF⊥BE于F.
(1)求證:BF=EF;
(2)若AB=8,DE=4,求平行四邊形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC⊥BC,AC=BC,延長BC至E使BE=BA,過點(diǎn)B作BD⊥AE于點(diǎn)D,BD與AC交于點(diǎn)F,連接EF.
(1)求證:△ACE≌△BCF.
(2)求證:BF=2AD,
(3)若CE=,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,∠ABC的平分線與邊CD的延長線交于點(diǎn)E,與AD交于點(diǎn)F,且AF=DF,
①求證:AB=DE;
②若AB=3,BF=5,求△BCE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一種斜挎包,其挎帶由雙層部分、單層部分和調(diào)節(jié)扣構(gòu)成.樂樂用后發(fā)現(xiàn),通過調(diào)節(jié)扣加長或縮短單層部分的長度,可以使挎帶的長度(單層部分與雙層部分長度的和,其中調(diào)節(jié)扣所占的長度忽略不計)增長或縮短.經(jīng)測量,得到如下數(shù)據(jù):
單層部分的長度(cm) | … | 4 | 6 | 8 | 10 | … | 150 |
雙層部分的長度(cm) | … | 73 | 72 | 71 |
| … | 0 |
(1)根據(jù)上表中數(shù)據(jù)的規(guī)律,填寫表格中空白處的數(shù)據(jù);
(2)設(shè)單層部分的長度為xcm,請用含x的代數(shù)式表示出雙層部分的長度 cm;
(3)根據(jù)樂樂的身高和習(xí)慣,挎帶的長度為110cm時,背起來最舒適,請求出此時單層部分的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖放置的兩個正方形,大正方形ABCD邊長為a,小正方形CEFG邊長為b(a>b),M是BC邊上一個動點(diǎn),聯(lián)結(jié)AM,MF,MF交CG于點(diǎn)P,將△ABM繞點(diǎn)A旋轉(zhuǎn)至△ADN,將△MEF繞點(diǎn)F旋轉(zhuǎn)恰好至△NGF.給出以下三個結(jié)論:①∠AND=∠MPC; ②△ABM≌△NGF;③S四邊形AMFN=a2+b2.
其中正確的結(jié)論是_____(請?zhí)顚懶蛱枺?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a<0)的圖象與x軸的兩個交點(diǎn)A、B的橫坐標(biāo)分別為﹣3、1,與y軸交于點(diǎn)C,下面四個結(jié)論:①16a+4b+c<0;②若P(﹣5,y1),Q(,y2)是函數(shù)圖象上的兩點(diǎn),則y1>y2;③c=﹣3a;④若△ABC是等腰三角形,則b=﹣或﹣.其中正確的有_____.(請將正確結(jié)論的序號全部填在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在甲、乙兩個不透明的布袋里,都裝有3個大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標(biāo)有數(shù)字0,1,2;乙袋中的小球上分別標(biāo)有數(shù)字﹣1,﹣2,0.現(xiàn)從甲袋中任意摸出一個小球,記其標(biāo)有的數(shù)字為x,再從乙袋中任意摸出一個小球,記其標(biāo)有的數(shù)字為y,以此確定點(diǎn)M的坐標(biāo)(x,y).
(1)請你用畫樹狀圖或列表的方法,寫出點(diǎn)M所有可能的坐標(biāo);
(2)求點(diǎn)M(x,y)在函數(shù)y=﹣的圖象上的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com