【題目】下列命題中,正確的的是( )
A.矩形的對(duì)角線互相垂直B.菱形的對(duì)角線相等
C.矩形的四個(gè)角不定相等D.正方形的對(duì)角線互相垂直且相等
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下列證明:
如圖,已知DE⊥AC于點(diǎn)E,BC⊥AC于點(diǎn)C,F(xiàn)G⊥AB于點(diǎn)G,∠1=∠2,求證:CD⊥AB.
證明:∵DE⊥AC,BC⊥AC(已知),
∴DE∥(),
∴∠2=(兩直線平行,內(nèi)錯(cuò)角相等),
∵∠1=∠2,(已知),
∴∠1=(),
∴GF∥CD(),
∵FG⊥AB(已知),
∴CD⊥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O為△ABC的外接圓,圓心O在AB上.
(1)在圖1中,用尺規(guī)作圖作∠BAC的平分線AD交⊙O于D(保留作圖痕跡,不寫作法與證明);
(2)如圖2,設(shè)∠BAC的平分線AD交BC于E,⊙O半徑為5,AC=4,連接OD交BC于F.
①求證:OD⊥BC;
②求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測(cè)得旗桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長(zhǎng)BC是12米,梯坎坡度i=1:,則大樓AB的高度約為( )(精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)
A.30.6 B.32.1 C.37.9 D.39.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(-4,-6),將點(diǎn)A先向右平移4個(gè)單位長(zhǎng)度,再向上平移6個(gè)單位長(zhǎng)度,得到A′,則A′的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用配方法解一元二次方程x2﹣6x﹣8=0,下列變形正確的是( 。
A. (x﹣6)2=﹣8+36 B. (x﹣6)2=8+36 C. (x﹣3)2=8+9 D. (x﹣3)2=﹣8+9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面圖形上的任意兩點(diǎn)P,Q,如果經(jīng)過(guò)某種變換(如:平移、旋轉(zhuǎn)、軸對(duì)稱等)得到新圖形上的對(duì)應(yīng)點(diǎn)P′,Q′,保持P P′= Q Q′,我們把這種對(duì)應(yīng)點(diǎn)連線相等的變換稱為“同步變換”。對(duì)于三種變換: ①平移、②旋轉(zhuǎn)、③軸對(duì)稱,其中一定是“同步變換”的有(填序號(hào))。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=,AD=10,點(diǎn)E是CD中點(diǎn),將這張紙片依次折疊兩次;第一次折疊紙片使點(diǎn)A與點(diǎn)E重合,如圖2,折痕為MN,連接ME/NE;第二次折疊紙片使點(diǎn)N與點(diǎn)E重合,如圖3,點(diǎn)B落到B′處,折痕為HG,連接HE,則tan∠EHG= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com