【題目】下列命題中,正確的的是(

A.矩形的對(duì)角線互相垂直B.菱形的對(duì)角線相等

C.矩形的四個(gè)角不定相等D.正方形的對(duì)角線互相垂直且相等

【答案】D

【解析】

根據(jù)特殊四邊形的性質(zhì)即可求出答案.

解:A、矩形的對(duì)角線相等,但不一定垂直,錯(cuò)誤;

B、菱形的對(duì)角線互相垂直,但不一定相等,錯(cuò)誤;

C、矩形的四個(gè)角都是直角,相等,錯(cuò)誤;

D、正確.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下列證明:
如圖,已知DE⊥AC于點(diǎn)E,BC⊥AC于點(diǎn)C,F(xiàn)G⊥AB于點(diǎn)G,∠1=∠2,求證:CD⊥AB.

證明:∵DE⊥AC,BC⊥AC(已知),
∴DE∥),
∴∠2=(兩直線平行,內(nèi)錯(cuò)角相等),
∵∠1=∠2,(已知),
∴∠1=),
∴GF∥CD(),
∵FG⊥AB(已知),
∴CD⊥AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O為△ABC的外接圓,圓心O在AB上.

(1)在圖1中,用尺規(guī)作圖作∠BAC的平分線AD交⊙O于D(保留作圖痕跡,不寫作法與證明);

(2)如圖2,設(shè)∠BAC的平分線AD交BC于E,⊙O半徑為5,AC=4,連接OD交BC于F.

①求證:OD⊥BC;

②求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測(cè)得旗桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長(zhǎng)BC是12米,梯坎坡度i=1:,則大樓AB的高度約為( )(精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)

A.30.6 B.32.1 C.37.9 D.39.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(-4,-6),將點(diǎn)A先向右平移4個(gè)單位長(zhǎng)度,再向上平移6個(gè)單位長(zhǎng)度,得到A′,A′的坐標(biāo)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解一元二次方程x2﹣6x﹣8=0,下列變形正確的是( 。

A. (x﹣6)2=﹣8+36 B. (x﹣6)2=8+36 C. (x﹣3)2=8+9 D. (x﹣3)2=﹣8+9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于平面圖形上的任意兩點(diǎn)P,Q,如果經(jīng)過某種變換(如:平移、旋轉(zhuǎn)、軸對(duì)稱等)得到新圖形上的對(duì)應(yīng)點(diǎn)P′,Q′,保持P P′= Q Q′,我們把這種對(duì)應(yīng)點(diǎn)連線相等的變換稱為“同步變換”。對(duì)于三種變換: ①平移、②旋轉(zhuǎn)、③軸對(duì)稱,其中一定是“同步變換”的有(填序號(hào))。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形紙片ABCD中,AB=,AD=10,點(diǎn)E是CD中點(diǎn),將這張紙片依次折疊兩次;第一次折疊紙片使點(diǎn)A與點(diǎn)E重合,如圖2,折痕為MN,連接ME/NE;第二次折疊紙片使點(diǎn)N與點(diǎn)E重合,如圖3,點(diǎn)B落到B′處,折痕為HG,連接HE,則tanEHG=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正六邊形的每個(gè)內(nèi)角的度數(shù)是度.

查看答案和解析>>

同步練習(xí)冊(cè)答案