如圖,正方形ABCD的邊長為4,E是BC邊的中點,點P在射線AD上,過P作PF⊥AE于F.
(1)求證:△PFA∽△ABE;
(2)當點P在射線AD上運動時,設PA=x,是否存在實數(shù)x,使精英家教網(wǎng)以P,F(xiàn),E為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,說明理由.
分析:(1)在△PFA與△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;
(2)根據(jù)題意:若△EFP∽△ABE,則∠PEF=∠EAB;必須有PE∥AB;分兩種情況進而列出關系式.
解答:精英家教網(wǎng)(1)證明:∵AD∥BC,
∴∠PAF=∠AEB.
∵∠PFA=∠ABE=90°,
∴△PFA∽△ABE.

(2)解:若△EFP∽△ABE,則∠PEF=∠EAB.
∴PE∥AB.
∴四邊形ABEP為矩形.精英家教網(wǎng)
∴PA=EB=2,即x=2.
若△PFE∽△ABE,則∠PEF=∠AEB.
∵∠PAF=∠AEB,
∴∠PEF=∠PAF.
∴PE=PA.
∵PF⊥AE,
∴點F為AE的中點.
∵AE=
AB2+BE2
=2
5
,
∴EF=
1
2
AE=
5

PE
AE
=
EF
EB
,即
PE
2
5
=
5
2

∴PE=5,即x=5.
∴滿足條件的x的值為2或5.
點評:解答本題要充分利用正方形的特殊性質.注意在正方形中的特殊三角形的應用,搞清楚矩形、菱形、正方形中的三角形的三邊關系,可有助于提高解題速度和準確率.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結論的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案