【答案】
分析:①,延長AO交圓于點(diǎn)N,連接BN,可證明∠ABO=∠HBC.因此①正確;
②原式可寫成
=
,無法直接用相似來求出,那么可通過相等的比例關(guān)系式來進(jìn)行轉(zhuǎn)換,不難發(fā)現(xiàn)三角形BEC中,∠ABC=60°,那么BC和BE存在倍數(shù)關(guān)系,即BC=2BE,因此如果證得
=
,可發(fā)現(xiàn)這個(gè)比例關(guān)系式正好是相似三角形BEH和BAF的兩組對(duì)應(yīng)線段,因此本題的結(jié)論也是正確的.
③要證MB=BD,先看與BD相等的線段有哪些,不難通過相似三角形ABN和BFC(一組直角,∠OBA=∠OAB=∠FBC)得出
,將這個(gè)結(jié)論和②的結(jié)論進(jìn)行置換即可得出:BD=BO=BH=BG,因此可證MB和圓的半徑相等即可得出BM=BD的結(jié)論.如果連接NC,在三角形ANC中∠ANC=∠ABC=60°,因此AN=2NC,NC就是半徑的長.通過相似三角形BME和CAE可得出
,而在直角三角形BEC中,BE:EC=tan30°,而在直角三角形ANC中,NC:AC=tan30°,因此
,即可得出BM=NC=BO=BD.因此該結(jié)論也成立.
④在③中已經(jīng)得出了BD=BG=BO=BH,而∠ABC=60°,因此三角形BGD是等邊三角形.本結(jié)論也成立.
因此四個(gè)結(jié)論都成立,
解答:解:①延長AO交圓于點(diǎn)N,連接BN,則∠ABN=90°,又∠ACB=∠N,∠ABO=∠BAO,所以∠ABO=∠HBC.因此①正確;
②原式可寫成
=
,∠ABC=60°,那么BC=2BE,因此
=
,所以本題的結(jié)論也是正確的.
③∵△ABN∽△BFC(一組直角,∠OBA=∠OAB=∠FBC)∴
,BD=BO=BH=BG,BM=BD.
連接NC,在三角形ANC中∠ANC=∠ABC=60°,∴AN=2NC,BE:EC=tan30°,
在直角三角形ANC中,NC:AC=tan30°,
,∴BM=NC=BO=BD.
因此該結(jié)論也成立.
④在③中已經(jīng)得出了BD=BG=BO=BH,而∠ABC=60°,因此三角形BGD是等邊三角形.本結(jié)論也成立.
因此四個(gè)結(jié)論都成立,
故選D.
點(diǎn)評(píng):本題中線段較多,要找準(zhǔn)和已知,所求的條件相關(guān)的線段,然后逐一梳理思路,通過相似三角形來進(jìn)行求解.