(1)探索

上面三個(gè)圖中∠AOB是平角,OE,OD分別是∠COB和∠COA的平分線.

在圖1中,∠BOC=60度,通過計(jì)算,∠DOE的度數(shù)為(  )度;

在圖2中,∠BOC=90度,通過計(jì)算,∠DOE的度數(shù)為(  )度;

在圖3中,∠BOC=130度,通過計(jì)算,∠DOE的度數(shù)為(  )度;

(2)發(fā)現(xiàn)像上面這樣過平角的頂點(diǎn)引一條射線將其分成相鄰的兩個(gè)角,然后做這兩個(gè)角的平分線,這兩條角平分線所成的角為(  )度.

(3)應(yīng)用

一次木工師傅急著要用一個(gè)直角拐尺,即直角三角板,來畫一個(gè)直角,但是忘記帶了,于是他尋找了一張不規(guī)則的紙片,但是有一條邊FG恰好是直線,并且將這張紙片作了如圖所示的操作,將紙片折疊成∠ADE,然后根據(jù)這個(gè)簡易模型畫了一個(gè)角,他這樣做可行嗎?請你說出其中的道理.

答案:
解析:

  解:(1)90 90 90

  (2)90

  (3)可行,照圖那樣折疊總有∠ADE為直角.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在一節(jié)數(shù)學(xué)實(shí)踐活動(dòng)課上,老師拿出三個(gè)邊長都為5cm的正方形硬紙板,他向同學(xué)們提出了這樣一個(gè)問題:若將三個(gè)正方形紙板不重疊地放在桌面上,用一個(gè)圓形硬紙板將其蓋住,這樣的圓形硬紙板的最小直徑應(yīng)有多大?問題提出后,同學(xué)們經(jīng)過討論,大家覺得本題實(shí)際上就是求將三個(gè)正方形硬紙板無重疊地適當(dāng)放置,圓形硬紙板能蓋住時(shí)的最小直徑.老師將同學(xué)們討論過程中探索出的三種不同擺放類型的圖形畫在黑板上,如下圖所示:
(1)通過計(jì)算(結(jié)果保留根號(hào)與π).
(Ⅰ)圖①能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑應(yīng)為
 
cm;
(Ⅱ)圖②能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑為
 
cm;
(Ⅲ)圖③能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑為
 
cm;
(2)其實(shí)上面三種放置方法所需的圓形硬紙板的直徑都不是最小的,請你畫出用圓形硬紙板蓋住三個(gè)正方形時(shí)直徑最小的放置方法,(只要畫出示意圖,不要求說明理由),并求出此時(shí)圓形硬紙板的直徑.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探索:在圖1至圖3中,已知△ABC的面積為a,
(1)如圖1,延長△ABC的邊BC到點(diǎn)D,使CD=BC,連接DA.若△ACD的面積為S1,則S1=
a
a
(用含a的代數(shù)式表示)
(2)如圖2,延長△ABC的邊BC到點(diǎn)D,延長邊CA到點(diǎn)E,使CD=BC,AE=CA,連接DE.若△DEC的面積為S2,則S2=
2a
2a
(用含a的代數(shù)式表示)
(3)在圖2的基礎(chǔ)上延長AB到點(diǎn)F,使BF=AB,連接FD,F(xiàn)E,得到△DEF(如圖3).若陰影部分的面積為S3,則S3=
6a
6a
(用含a的代數(shù)式表示),并運(yùn)用上述(2)的結(jié)論寫出理由.
發(fā)現(xiàn):像上面那樣,將△ABC各邊均順次延長一倍,連接所得端點(diǎn),得到△DEF(如圖3),此時(shí),我們稱△ABC向外擴(kuò)展了一次.可以發(fā)現(xiàn),擴(kuò)展一次后得到的△DEF的面積是原來△ABC面積的
7
7
倍.
應(yīng)用:要在一塊足夠大的空地上栽種花卉,工程人員進(jìn)行了如下的圖案設(shè)計(jì):首先在△ABC的空地上種紅花,然后將△ABC向外擴(kuò)展三次(圖4已給出了前兩次擴(kuò)展的圖案).在第一次擴(kuò)展區(qū)域內(nèi)種謊話,第二次擴(kuò)展區(qū)域內(nèi)種紫花,第三次擴(kuò)展區(qū)域內(nèi)種藍(lán)花.如果種紅花的區(qū)域(即△ABC)的面積是10平方米,請你運(yùn)用上述結(jié)論求出:
(1)種紫花的區(qū)域的面積;
(2)種藍(lán)花的區(qū)域的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

任意寫出一個(gè)各數(shù)位上的數(shù)字均不為零且互不相等的三位數(shù),從這個(gè)三位數(shù)上任取兩個(gè)數(shù)字組成兩位數(shù),求出所有兩位數(shù)的和,然后將它除以原三位數(shù)各數(shù)位上的數(shù)字之和.例如,對三位數(shù)123,取其三各數(shù)位上的兩個(gè)數(shù)字組成的兩位數(shù)分別是:12,13,21,23,31,32,它們的和為132,而它各個(gè)數(shù)位上數(shù)字的和是6,132÷6=22,再換兩個(gè)數(shù)試試,你發(fā)現(xiàn)了什么?請寫出上面方法的探索過程和所發(fā)現(xiàn)的結(jié)論,并運(yùn)用所學(xué)知識(shí)說明結(jié)論的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江蘇模擬題 題型:解答題

在一節(jié)數(shù)學(xué)實(shí)踐活動(dòng)課上,老師拿出三個(gè)邊長都為5cm的正方形硬紙板,他向同學(xué)們提出了這樣一個(gè)問題:若將三個(gè)正方形紙板不重疊地放在桌面上,用一個(gè)圓形硬紙板將其蓋住,這樣的圓形硬紙板的最小直徑應(yīng)有多大?問題提出后,同學(xué)們經(jīng)過討論,大家覺得本題實(shí)際上就是求將三個(gè)正方形硬紙板無重疊地適當(dāng)放置,圓形硬紙板能蓋住時(shí)的最小直徑.老師將同學(xué)們討論過程中探索出的三種不同擺放類型的圖形畫在黑板上,如下圖所示
(1)通過計(jì)算(結(jié)果保留根號(hào)與π),
  (Ⅰ)圖①能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑應(yīng)為 ______ cm;
  (Ⅱ)圖②能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑為 _______ cm;
  (Ⅲ)圖③能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑為 _______ cm;
(2)其實(shí)上面三種放置方法所需的圓形硬紙板的直徑都不是最小的,請你畫出用圓形硬紙板蓋住三個(gè)正方形時(shí)直徑最小的放置方法,(只要畫出示意圖,不要求說明理由),并求出此時(shí)圓形硬紙板的直徑.

查看答案和解析>>

同步練習(xí)冊答案