精英家教網 > 初中數學 > 題目詳情

如圖,在東西方向的海岸線l上有一長為1千米的碼頭MN,在碼頭西端M的正西方向30 千米處有一觀察站O.某時刻測得一艘勻速直線航行的輪船位于O的北偏西30°方向,且與O相距千米的A處;經過40分鐘,又測得該輪船位于O的正北方向,且與O相距20千米的B處.
(1)求該輪船航行的速度;
(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請說明理由.(參考數據:,
    

解:(1)過點A作AC⊥OB于點C。由題意,得

OA=千米,OB=20千米,∠AOC=30°。
(千米)。
∵在Rt△AOC中
OC=OA•cos∠AOC=(千米),
∴BC=OC﹣OB=30﹣20=10(千米)。
∴在Rt△ABC中,(千米)。
∴輪船航行的速度為:(千米/時)。
(2)如果該輪船不改變航向繼續(xù)航行,不能行至碼頭MN靠岸。理由是:
延長AB交l于點D。
∵AB=OB=20(千米),∠AOC=30°,
∴∠OAB=∠AOC=30°,∴∠OBD=∠OAB+∠AOC=60°.
∴在Rt△BOD中,OD=OB•tan∠OBD=20×tan60°=(千米)。
∵OD==ON,
∴該輪船不改變航向繼續(xù)航行,不能行至碼頭MN靠岸。    

解析

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,李明同學在東西方向的濱海路A處,測得海中燈塔P在北偏東60°方向上,他向東走400米至B處,測得燈塔P在北偏東30°方向上,求燈塔P到濱海路的距離.(結果保留根號)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,小明同學在東西方向的環(huán)海路A處,測得海中燈塔P在北偏東60°方向上,在A處東500米的B處,測得海中燈塔P在北偏東30°方向上,則燈塔P到環(huán)海路的距離PC=
 
米.(用根號表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,小明同學在東西方向的環(huán)海路A處,測得海中燈塔P在北偏東60°方向上,在A處東500米的B處,測得海中燈塔P在北偏東30°方向上,則燈塔P到環(huán)海路的距離PC=(  )米.
A、250
B、500
C、250
3
D、500
3

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,小明同學在東西方向的環(huán)海路A處,測得海中燈塔P在北偏東60°方向上,在A處正東500米的B處,測得海中燈塔P在北偏東30°方向上,則燈塔P到環(huán)海路的距離PC等于多少米?

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,小明同學在東西方向的環(huán)海路A處,測得海中燈塔P在北偏東60°方向上,在A處正東500米的B處,測得海中燈塔P在北偏東30°方向上,求燈塔P到環(huán)海路的距離.

  

 

查看答案和解析>>

同步練習冊答案