問題背景:在△ABC中,AB、BC、AC三邊的長分別為、、,求這個(gè)三角形BC邊上的高.
杰杰同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處).借用網(wǎng)格等知識(shí)就能計(jì)算出這個(gè)三角形BC邊上的高.
(1)請(qǐng)?jiān)谡叫尉W(wǎng)格中畫出格點(diǎn)△ABC;(2)求出這個(gè)三角形BC邊上的高.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,∠B與∠C的平分線交于點(diǎn)O,過點(diǎn)O作DE∥BC,分別交AB、AC于點(diǎn)D、E.若AB=5,AC=4,則△ADE的周長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點(diǎn)E、F分別是□ABCD的邊BC、AD上的點(diǎn),且BE=DF.
(1) 求證:四邊形AECF是平行四邊形;
(2) 若AE=BE,∠BAC=90°,試判斷四邊形AECF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,把“QQ”笑臉放在直角坐標(biāo)系中,已知左眼A的坐標(biāo)是(−2,3),嘴唇C點(diǎn)的坐標(biāo)為(−1,1),則此“QQ”笑臉右眼B的坐標(biāo)是 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.
(3) 拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
將一張長方形紙片只折一次,使得折痕平分這個(gè)長方形的面積,這樣的方法共有( 。
| A. | 2種 | B. | 4種 | C. | 6種 | D. | 無數(shù)種 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,寫出△ABC各頂點(diǎn)的坐標(biāo),并畫出△ABC關(guān)于x軸對(duì)稱的△DEF,你能證明AC=BC嗎?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com