已知拋物線的頂點(diǎn)為(0,4)且與x軸交于(﹣2,0),(2,0).

(1)直接寫(xiě)出拋物線解析式;
(2)如圖,將拋物線向右平移k個(gè)單位,設(shè)平移后拋物線的頂點(diǎn)為D,與x軸的交點(diǎn)為A、B,與原拋物線的交點(diǎn)為P.
①當(dāng)直線OD與以AB為直徑的圓相切于E時(shí),求此時(shí)k的值;
②是否存在這樣的k值,使得點(diǎn)O、P、D三點(diǎn)恰好在同一條直線上?若存在,求出k值;若不存在,請(qǐng)說(shuō)明理由.
解:(1)y=﹣x2+4。
(2)①如圖,連接CE,CD,

∵OD是⊙C的切線,∴CE⊥OD。
在Rt△CDE中,∠CED=90°,CE=AC=2,DC=4,
∴∠EDC=30°。
∴在Rt△CDO中,∠OCD=90°,CD=4,∠ODC=30°,
∴OC=
∴當(dāng)直線OD與以AB為直徑的圓相切時(shí),k=OC=。
②存在k=,能夠使得點(diǎn)O、P、D三點(diǎn)恰好在同一條直線上。理由如下:
設(shè)拋物線y=﹣x2+4向右平移k個(gè)單位后的解析式是y=﹣(x﹣k)2+4,它與y=﹣x2+4交于點(diǎn)P,
由﹣(x﹣k)2+4=﹣x2+4,解得x1=,x2=0(不合題意舍去)。
當(dāng)x=時(shí),y=﹣k2+4。
∴點(diǎn)P的坐標(biāo)是(,﹣k2+4)。
設(shè)直線OD的解析式為y=mx,把D(k,4)代入,得mk=4,解得m=。
∴直線OD的解析式為y=x。
若點(diǎn)P(,﹣k2+4)在直線y=x上,得﹣k2+4=,解得k=±(負(fù)值舍去)。
∴當(dāng)k=時(shí),O、P、D三點(diǎn)在同一條直線上。

試題分析:(1)∵拋物線的頂點(diǎn)為(0,4),∴可設(shè)拋物線解析式為y=ax2+4。
又∵拋物線過(guò)點(diǎn)(2,0),∴0=4a+4,解得a=﹣1。∴拋物線解析式為y=﹣x2+4。
(2)①連接CE,CD,根據(jù)切線的性質(zhì)得出CE⊥OD,再解Rt△CDE,得出∠EDC=30°,然后Rt△CDO,得出OC=,則k=OC=
②設(shè)拋物線y=﹣x2+4向右平移k個(gè)單位后的解析式是y=﹣(x﹣k)2+4,它與y=﹣x2+4交于點(diǎn)P,先求出交點(diǎn)P的坐標(biāo)是(,﹣k2+4),再利用待定系數(shù)法求出直線OD的解析式為y=x,然后將點(diǎn)P的坐標(biāo)代入y=x,即可求出k的值。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,四邊形OABC是邊長(zhǎng)為2的正方形,二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A,B,與x軸分別交于點(diǎn)E,F(xiàn),且點(diǎn)E的坐標(biāo)為(,0),以O(shè)C為直徑作半圓,圓心為D.

(1)求二次函數(shù)的解析式;
(2)求證:直線BE是⊙D的切線;
(3)若直線BE與拋物線的對(duì)稱軸交點(diǎn)為P,M是線段CB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)B,C不重合),過(guò)點(diǎn)M作MN∥BE交x軸與點(diǎn)N,連結(jié)PM,PN,設(shè)CM的長(zhǎng)為t,△PMN的面積為S,求S與t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍.S是否存在著最大值?若存在,求出最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).

(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為D,在其對(duì)稱軸的右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)M是拋物線上一點(diǎn),以B,C,D,M為頂點(diǎn)的四邊形是直角梯形,試求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B(3,0)兩點(diǎn),交y軸于點(diǎn)E.

(1)求此拋物線的解析式.
(2)若直線y=x+1與拋物線交于A、D兩點(diǎn),與y軸交于點(diǎn)F,連接DE,求△DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=﹣x2+4與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn)且在第一象限,過(guò)點(diǎn)P作x軸的垂線,垂足為D,交直線BC于點(diǎn)E.

(1)求點(diǎn)A、B、C的坐標(biāo)和直線BC的解析式;
(2)求△ODE面積的最大值及相應(yīng)的點(diǎn)E的坐標(biāo);
(3)是否存在以點(diǎn)P、O、D為頂點(diǎn)的三角形與△OAC相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列選項(xiàng)正確的是
A.a(chǎn)>0B.c>0C.a(chǎn)c>0D.bc<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,AB是半圓O的直徑,以O(shè)A為直徑作半圓C,P是半圓C上的一個(gè)動(dòng)點(diǎn)(P與點(diǎn)A,O不重合),AP的延長(zhǎng)線交半圓O于點(diǎn)D,其中OA=4.

(1)判斷線段AP與PD的大小關(guān)系,并說(shuō)明理由;
(2)連接OD,當(dāng)OD與半圓C相切時(shí),求的長(zhǎng);
(3)過(guò)點(diǎn)D作DE⊥AB,垂足為E(如圖②),設(shè)AP=x,OE=y,求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說(shuō)法錯(cuò)誤的是
A.圖象關(guān)于直線x=1對(duì)稱
B.函數(shù)ax2+bx+c(a≠0)的最小值是﹣4
C.﹣1和3是方程ax2+bx+c(a≠0)的兩個(gè)根
D.當(dāng)x<1時(shí),y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,拋物線的頂點(diǎn)為P(-2,2)與y軸交于點(diǎn)A(0,3),若平移該拋物線使其頂P沿直線移動(dòng)到點(diǎn),點(diǎn)A的對(duì)應(yīng)點(diǎn)為,則拋物線上PA段掃過(guò)的區(qū)域(陰影部分)的面積為     .

查看答案和解析>>

同步練習(xí)冊(cè)答案