【題目】如圖,在矩形紙片ABCD中,AB=6cm,BC=8cm,將矩形紙片折疊,使點C與點A重合,請在圖中畫出折痕,并求折痕的長.

【答案】圖詳見解析,折痕長cm.

【解析】

連接AC,作出AC的垂直平分線,分別交AD、AC、BC于點E、O、F,EF即為折痕;根據(jù)勾股定理求出AC的長,根據(jù)翻折變換的性質可得AC⊥EF,OA=OC=AC,再利用∠ACB的正切列式求出OF的長,再證明△AOE≌△COF,根據(jù)全等三角形對應邊相等可得OE=OF,由此即可求得EF的長

如圖所示,EF即為折痕;

∵AB=6cm,BC=8cm,

由勾股定理可得,AC=10cm,

∵折疊后點C與點A重合,

∴AC⊥EF,OA=OC=AC=×10=5cm,

∵tan∠ACB=

,

解得OF=cm,

∵矩形對邊AD∥BC,

∴∠OAE=∠OCF,

在△AOE和△COF中,

,

∴△AOE≌△COF(ASA),

∴OE=OF=cm,

∴折痕EF=+=cm.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知EF∥GH,A、DGH上的兩點,M、BEF上的兩點,延長AM于點C,AB平分∠DAC,直線DB平分∠FBC,若∠ACB=100°,則∠DBA的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AD=10,AB=8,點E為邊DC上一動點,連接AE,把△ADE沿AE折疊,使點D落在點D′處,當△DD′C是直角三角形時,DE的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+bx+e與x軸交于點A(﹣3,0)、點B(9,0),與y軸交于點C,頂點為D,連接AD、DB,點P為線段AD上一動點.

(1)求拋物線的解析式;
(2)如圖1,過點P作BD的平行線,交AB于點Q,連接DQ,設AQ=m,△PDQ的面積為S,求S關于m的函數(shù)解析式,以及S的最大值;

(3)如圖2,拋物線對稱軸與x軸交與點G,E為OG的中點,F(xiàn)為點C關于DG對稱的對稱點,過點P分別作直線EF、DG的垂線,垂足為M、N,連接MN,直接寫出△PMN為等腰三角形時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實驗室需要一批無蓋的長方體模型,一張大紙板可以做成長方體的側面30個,或長方體的底面25個,一個無蓋的長方體由4個側面和一個底面構成. 現(xiàn)有26張大紙板,則用多少張做側面,多少張做底面才可以使得剛好配套,沒有剩余?

反思:應用二元一次方程組解應用題時,要注意解題的步驟,解、設、答一個不能少,而由于未知數(shù)有兩個,則必須根據(jù)題意找出兩個等量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰ABC中,AB=AC,BAC=50°BAC的平分線與AB的垂直平分線交于點O、點C沿EF折疊后與點O重合,則CEF的度數(shù)是( 。

A. 60° B. 55° C. 50° D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】按要求畫圖,并回答問題:

如圖,在同一平面內有三點AB,C

(1)畫直線AC;

(2)畫射線CB

(3)過點B作直線AC的垂線BD,垂足為D;

(4)畫線段AB及線段AB的中點E,連接DE

(5)通過畫圖和測量,與線段DE長度相等的線段有__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上有點a,b,c三點

(1)用“<”將a,b,c連接起來.

(2)b﹣a   1(填“<”“>”,“=”)

(3)化簡|c﹣b|﹣|c﹣a+1|+|a﹣1|

(4)用含a,b的式子表示下列的最小值:

①|x﹣a|+|x﹣b|的最小值為   

②|x﹣a|+|x﹣b|+|x+1|的最小值為   ;

③|x﹣a|+|x﹣b|+|x﹣c|的最小值為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從坡上建筑物AB觀測坡底建筑物CD.從A點測得C點的俯角為45°,從B點測得D點的俯角為30°.已知AB的高度為10m,AB與CD的水平距離是OD=15m,則CD的高度為m(結果保留根號)

查看答案和解析>>

同步練習冊答案