【題目】如圖,已知點(diǎn)是反比例函數(shù)的圖像上的一個動點(diǎn),經(jīng)過點(diǎn)的直線交軸負(fù)半軸于點(diǎn),交軸正半軸于點(diǎn).過點(diǎn)作軸的垂線,交反比例函數(shù)的圖像于點(diǎn).過點(diǎn)作軸于點(diǎn),交于點(diǎn),連接.設(shè)點(diǎn)的橫坐標(biāo)是.
(1)若,求點(diǎn)的坐標(biāo)(用含的代數(shù)式表示);
(2)若,當(dāng)四邊形是平行四邊形時(shí),求的值,并求出此時(shí)直線對應(yīng)的函數(shù)表達(dá)式.
【答案】(1)(a,);(2)y=x+3.
【解析】
(1)由A點(diǎn)坐標(biāo)可表示出AE的長,利用相似三角形的性質(zhì)可求得CO的長,代入反比例函數(shù)解析式可表示出D點(diǎn)坐標(biāo);
(2)由條件可求得D點(diǎn)坐標(biāo),由平行四邊形的性質(zhì)可得△ACF∽△ABE,利用相似三角形的性質(zhì)可求得a的值,則可求得A點(diǎn)坐標(biāo),由A、C的坐標(biāo),利用待定系數(shù)法可求得直線l的函數(shù)表達(dá)式.
(1)∵點(diǎn)A的橫坐標(biāo)是a,∴點(diǎn)A的縱坐標(biāo)為,∴AE=,
∵AE⊥x軸,∴CO∥AE,∴△BOC∽△BEA,∴==,∴CO=,
把y=代入y=,解得x=a,∴D點(diǎn)坐標(biāo)為(a,);
(2)∵OC=3,∴D點(diǎn)縱坐標(biāo)為3,把y=3代入y=可得x=4,∴D(4,3),∴CD=4,
∵四邊形BCDE是平行四邊形,∴BE=CD=4,且CD∥BE,∴△ACF∽△ABE,
∴=,即=,解得a=2,∴A(2,6),且C(0,3),
∴可設(shè)直線l的函數(shù)表達(dá)式為y=kx+3,把x=2,y=6代入,可得6=2k+3,解得k=,
∴直線l的函數(shù)表達(dá)式為y=x+3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在RtABC中,∠ACB=90°,BAC=30°,BC=6. (I)如圖①,將線段CA繞點(diǎn)C順時(shí)針旋轉(zhuǎn)30°,所得到與AB交于點(diǎn)M,則CM的長=;
(II)如圖②,點(diǎn)D是邊AC上一點(diǎn)D且AD=2 ,將線段AD繞點(diǎn)A旋轉(zhuǎn),得線段AD′,點(diǎn)F始終為BD′的中點(diǎn),則將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)度時(shí),線段CF的長最大,最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線和直線l在同一直角坐標(biāo)系中的圖像如圖所示,拋物線的對稱軸為直線x=﹣1,P1(x1 , y1),P2(x2 , y2)是拋物線上的點(diǎn),P3(x3 , y3)是直線l上的點(diǎn),且x3<﹣1<x1<x2 , 則y1 , y2 , y3的大小關(guān)系是( )
A.y1<y2<y3
B.y2<y3<y1
C.y3<y1<y2
D.y2<y1<y3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從⊙O外一點(diǎn)A引⊙O的切線AB,切點(diǎn)為B,連接AO并延長交⊙O于點(diǎn)C,點(diǎn)D.連接BC.
(1)如圖1,若∠A=26°,求∠C的度數(shù);
(2)如圖2,若AE平分∠BAC,交BC于點(diǎn)E.求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個老太太提著一個籃子去賣雞蛋,第一個人買走了她的雞蛋的一半又半個;第二個人買走了剩下的一半又半個;第三人買走了前兩個人剩下的一半又半個,正好賣完全部雞蛋,問老太太一共賣了多少個雞蛋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)完一元一次方程解法,數(shù)學(xué)老師出了一道解方程題目:
.李銘同學(xué)的解題步驟如下:
解:去分母,得3(x+1)-2(2-3x)=1;……①
去括號,得3x+3-4-6x=1; ……②
移項(xiàng),得3x-6x=1-3+4; ……③
合并同類項(xiàng),得-3x=2; ……④
系數(shù)化為1,得x=-. ……⑤
(1)聰明的你知道李銘的解答過程在第_________(填序號)出現(xiàn)了錯誤,出現(xiàn)上面錯誤的原因是違背了____.(填序號)①去括號法則;②等式的性質(zhì)1;③等式的性質(zhì)2;④加法交換律.
(2)請你寫出正確的解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,將邊長為2的正方形OABC如圖①放置,O為原點(diǎn). (Ⅰ)若將正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°時(shí),如圖②,求點(diǎn)A的坐標(biāo);
(Ⅱ)如圖③,若將圖①中的正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)75°時(shí),求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王計(jì)劃租一間商鋪,下面是某房屋中介提供的兩種商鋪的出租信息:
設(shè)租期為x(月),所需租金為y(元),其中x為大于1的整數(shù).
(1)若小王計(jì)劃租用的商鋪為90m2,請分別寫出在商座A,B租商鋪所需租金yA(元),yB(元)與租期x(月)之間的函數(shù)關(guān)系式;
(2)在(1)的前提下,請你幫助小王根據(jù)租期,租用哪個商座的商鋪房租更低.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.a2+a3=a5
B.(﹣2a2)3÷( )2=﹣16a4
C.3a﹣1=
D.(2 a2﹣ a)2÷3a2=4a2﹣4a+1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com