(2007•南通)某商場門前的臺階截面如圖所示.已知每級臺階的寬度(如CD)均為30cm,高度(如BE)均為20cm.為了方便殘疾人行走,商場決定將其中一個門的門前臺階改造成供輪椅行走的斜坡,并且設計斜坡的傾斜角為9度.請計算從斜坡起點A到臺階前的點B的水平距離.
(參考數(shù)據(jù):sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)

【答案】分析:讀懂題意,得到樓梯的高度和長度,然后構造直角三角形,利用三角函數(shù)得到和AB相關的線段的長度.
解答:解:過C作CF⊥AB,交AB的延長線于點F.
由條件,得CF=80cm,BF=90cm.(1分)
在Rt△CAF中,tanA=.(2分)
∴AF==500.(4分)
∴AB=AF-BF=500-90=410(cm).(5分)
答:從斜坡起點A到臺階前點B的距離為410cm.(6分)
點評:本題考查銳角三角函數(shù)的應用.需注意構造直角三角形是常用的輔助線方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《數(shù)據(jù)分析》(02)(解析版) 題型:選擇題

(2007•南通)某校初三(2)班的10名團員向“溫暖工程”捐款,10個人的捐款情況如下(單位:元):2,5,3,3,4,5,3,6,5,3,則上面這組數(shù)據(jù)的眾數(shù)是( )
A.3
B.3.5
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2007•南通)某商場將每臺進價為3000元的彩電以3900元的銷售價售出,每天可銷售出6臺.假設這種品牌的彩電每臺降價100x(x為正整數(shù))元,每天可多售出3x臺.(注:利潤=銷售價-進價)
(1)設商場每天銷售這種彩電獲得的利潤為y元,試寫出y與x之間的函數(shù)關系式;
(2)銷售該品牌彩電每天獲得的最大利潤是多少?此時,每臺彩電的銷售價是多少時,彩電的銷售量和營業(yè)額均較高?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省湛江市初中畢業(yè)生學業(yè)水平綜合測試數(shù)學試卷(二)(解析版) 題型:解答題

(2007•南通)某商場門前的臺階截面如圖所示.已知每級臺階的寬度(如CD)均為30cm,高度(如BE)均為20cm.為了方便殘疾人行走,商場決定將其中一個門的門前臺階改造成供輪椅行走的斜坡,并且設計斜坡的傾斜角為9度.請計算從斜坡起點A到臺階前的點B的水平距離.
(參考數(shù)據(jù):sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省汕頭市中考數(shù)學模擬試卷(二)(解析版) 題型:解答題

(2007•南通)某商場門前的臺階截面如圖所示.已知每級臺階的寬度(如CD)均為30cm,高度(如BE)均為20cm.為了方便殘疾人行走,商場決定將其中一個門的門前臺階改造成供輪椅行走的斜坡,并且設計斜坡的傾斜角為9度.請計算從斜坡起點A到臺階前的點B的水平距離.
(參考數(shù)據(jù):sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)

查看答案和解析>>

同步練習冊答案