如圖,點D、E、F、B在同一直線上,AB∥CD、AE∥CF,且AE=CF,若BD=10,BF=2,則EF=________.

6
分析:由于AB∥CD、AE∥CF,根據(jù)平行線的性質(zhì)可以得到∠B=∠D,∠AEF=∠CFD,然后利用已知條件就可以證明△AEF≌△CFD,最后利用全等三角形的性質(zhì)和已知條件即可求解.
解答:∵AB∥CD、AE∥CF,
∴∠B=∠D,∠AEF=∠CFD,
而AE=CF,
∴△AEF≌△CFD,
∴DF=EB,
∴DE=BF,
∴EF=BD-2BF=6.
故答案為:6.
點評:此題主要考查了全等三角形的性質(zhì)與判定,解題時首先利用平行線的性質(zhì)構(gòu)造全等條件證明三角形全等,然后利用全等三角形的性質(zhì)即可解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點A、B在數(shù)軸上,它們所對應(yīng)的數(shù)分別是-4、
2x+23x-1
,且點A、B關(guān)于原點O對稱,求x的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點A為⊙O直徑CB延長線上一點,過點A作⊙O的切線AD,切點為D,過點D作DE⊥AC,垂足為F,連接精英家教網(wǎng)BE、CD、CE,已知∠BED=30°.
(1)求tanA的值;
(2)若AB=2,試求CE的長.
(3)在(2)的條件下,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點A的坐標(biāo)為(2
2
,0
),點B在直線y=-x上運動,當(dāng)線段AB最短時,點B的坐標(biāo)為( 。
A、(0,0)
B、(
2
2
,-
2
2
)
C、(1,1)
D、(
2
,-
2
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點A、B在線段MN上,則圖中共有
 
條線段.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,點O到直線l的距離為3,如果以點O為圓心的圓上只有兩點到直線l的距離為1,則該圓的半徑r的取值范圍是
2<r<4

查看答案和解析>>

同步練習(xí)冊答案