【題目】如圖,在ABCD中,P是CD邊上一點(diǎn),且AP和BP分別平分∠DAB和∠CBA,若AD=5,AP=8,則△APB的周長(zhǎng)是_______

【答案】24

【解析】試題分析:∵四邊形ABCD是平行四邊形,

ADCB,ABCD,

∴∠DAB+∠CBA=180°,

又∵APBP分別平分∠DAB和∠CBA,

∴∠PABPBA (DABCBA)90°

在△APB中,∠APB=180°-(∠PAB+∠PBA)=90°;

AP平分∠DAB,

∴∠DAP=∠PAB,

ABCD,

∴∠PAB=∠DPA,

∴∠DAP=∠DPA

∴△ADP是等腰三角形,

ADDP=5,

同理:PCCB=5,

ABDCDPPC=10,

Rt△APB中,AB=10,AP=8,

BP6

,∴△APB的周長(zhǎng)=6+8+10=24;

故答案為:24.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,正方形A1B1C1O1、A2B2C2C1、…、AnBnCnCn1按如圖所示的方式放置,其中點(diǎn)A1、A2、A3、…、An均在一次函數(shù)y=kx+b的圖象上,點(diǎn)C1、C2、C3、…、Cn均在x軸上.若點(diǎn)B1的坐標(biāo)為(1,1),點(diǎn)B2的坐標(biāo)為(3,2),則點(diǎn)An的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】魯班家裝公司為芙蓉小區(qū)做家裝設(shè)計(jì),調(diào)查員設(shè)計(jì)了如下問(wèn)卷,對(duì)家裝風(fēng)格進(jìn)行專(zhuān)項(xiàng)調(diào)查.
通過(guò)隨機(jī)抽樣調(diào)查50家客戶(hù),得到如下數(shù)據(jù):
A B B A B B A C A C A B A D A A B
B A A D B A B A C A C B A A D A A
A B B D A A A B A C A B D A B A
(1)請(qǐng)你補(bǔ)全下面的數(shù)據(jù)統(tǒng)計(jì)表: 家裝風(fēng)格統(tǒng)計(jì)表

裝修風(fēng)格

劃記

戶(hù)數(shù)

百分比

A中式

正正正正正

25

50%

B歐式

C韓式

5

10%

D其他

10%

合計(jì)

50

100%


(2)請(qǐng)用扇形統(tǒng)計(jì)圖描述(1)表中的統(tǒng)計(jì)數(shù)據(jù);(注:請(qǐng)標(biāo)明各部分的圓心角度數(shù))
(3)如果公司準(zhǔn)備招聘10名裝修設(shè)計(jì)師,你認(rèn)為各種裝修風(fēng)格的設(shè)計(jì)師應(yīng)分別招多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王偉準(zhǔn)備用一段長(zhǎng)30米的籬笆圍成一個(gè)三角形形狀的小圈,用于飼養(yǎng)家兔.已知第一條邊長(zhǎng)為a米,由于受地勢(shì)限制,第二條邊長(zhǎng)只能是第一條邊長(zhǎng)的2倍多2米.
(1)請(qǐng)用a表示第三條邊長(zhǎng);
(2)問(wèn)第一條邊長(zhǎng)可以為7米嗎?請(qǐng)說(shuō)明理由,并求出a的取值范圍;
(3)能否使得圍成的小圈是直角三角形形狀,且各邊長(zhǎng)均為整數(shù)?若能,說(shuō)明你的圍法;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=x2﹣2x+m﹣1與x軸只有一個(gè)交點(diǎn),且與y軸交于A點(diǎn),如圖,設(shè)它的頂點(diǎn)為B.

(1)求m的值;
(2)過(guò)A作x軸的平行線,交拋物線于點(diǎn)C,求證:△ABC是等腰直角三角形;

(3)將此拋物線向下平移4個(gè)單位后,得到拋物線C′,且與x軸的左半軸交于E點(diǎn),與y軸交于F點(diǎn),如圖.請(qǐng)?jiān)趻佄锞C′上求點(diǎn)P,使得△EFP是以EF為直角邊的直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1.44的算術(shù)平方根是(

A.1.2B.1.2C.±1.2D.以上都是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)(1)閱讀理解:

如圖1,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問(wèn)題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,連接BE(或?qū)ⅰ鰽CD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD,把AB,AC,2AD集中在△ABE中.利用三角形三邊的關(guān)系即可判斷中線AD的取值范圍是_________;

(2)問(wèn)題解決:

如圖2,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證BE+CF>EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于的二元一次方程組的解都為正數(shù).

(1)求a的取值范圍;

(2)若上述方程組的解是等腰三角形的腰和底邊的長(zhǎng),且這個(gè)等腰三角形周長(zhǎng)為9,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年我縣中考的體育測(cè)試成績(jī)改為等級(jí)制,即把測(cè)試結(jié)果分為四個(gè)等級(jí):A級(jí):優(yōu)秀;B級(jí):良好;C級(jí):及格;D級(jí):不及格.我縣5月份舉行了全縣九年級(jí)學(xué)生體育測(cè)試.現(xiàn)從中隨機(jī)抽取了部分學(xué)生的體育成績(jī),并將其繪成了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問(wèn)題:
(1)本次抽樣測(cè)試的學(xué)生人數(shù)是;
(2)圖1中∠α的度數(shù)是 , 并把圖2條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該縣九年級(jí)有學(xué)生9000名,如果全部參加這次中考體育科目測(cè)試,請(qǐng)估算不及格的人數(shù)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案