如圖,AB、CD是半徑為5的⊙O的兩條弦,AB=8,CD=6,MN是直徑,AB⊥MN于點(diǎn)E,CD⊥MN于點(diǎn)F,P為EF上的任意一點(diǎn),則PA+PC的最小值為   
【答案】分析:A、B兩點(diǎn)關(guān)于MN對(duì)稱,因而PA+PC=PB+PC,即當(dāng)B、C、P在一條直線上時(shí),PA+PC的最小,即BC的值就是PA+PC的最小值
解答:解:連接OA,OB,OC,作CH垂直于AB于H.
根據(jù)垂徑定理,得到BE=AB=4,CF=CD=3,
∴OE===3,
OF===4,
∴CH=OE+OF=3+4=7,
BH=BE+EH=BE+CF=4+3=7,
在直角△BCH中根據(jù)勾股定理得到BC=7,
則PA+PC的最小值為
點(diǎn)評(píng):正確理解BC的長是PA+PC的最小值,是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是半⊙O的直徑,弦AC與AB成30°的角,AC=CD.
(1)求證:CD是半⊙O的切線;
(2)若OA=2,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:在直角坐標(biāo)系中,已知B(b,0),C(0,c),且|b+3|+(2c-8)2=0.
(1)求B、C的坐標(biāo);
(2)點(diǎn)A、D是第二象限內(nèi)的點(diǎn),點(diǎn)M、N分別是x軸和y軸負(fù)半軸上的點(diǎn),∠ABM=∠CBO,CD∥AB,MC、NB所在直線分別交AB、CD于E、F,若∠MEA=70°,∠CFB=30°.求∠CMB-∠CNB的值;
(3)如圖:AB∥CD,Q是CD上一動(dòng)點(diǎn),CP平分∠DCB,BQ與CP交于點(diǎn)P,給出下列兩個(gè)結(jié)論:①
∠DQB+QBC
∠QPC
的值不變;②
∠DQB+∠QBC
∠QPC
的值改變.其中有且只有一個(gè)是正確的,請(qǐng)你找出這個(gè)正確的結(jié)論并求其定值.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是半⊙O的直徑,C、D是半圓的三等分點(diǎn),半圓的半徑為R.
(1)CD與AB平行嗎?為什么?
(2)求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•武漢模擬)如圖,AB為⊙O的直徑,AM和BN是它的兩條切線,E為⊙O的半圓弧上一動(dòng)點(diǎn)(不與A、B重合),過點(diǎn)E的直線分別交射線AM、BN于D、C兩點(diǎn),且CB=CE.
(1)求證:CD為⊙O的切線;
(2)若tan∠BAC=
2
2
,求 
AH
CH
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•麗水)如圖1,點(diǎn)A是x軸正半軸上的動(dòng)點(diǎn),點(diǎn)B坐標(biāo)為(0,4),M是線段AB的中點(diǎn),將點(diǎn)M繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)90°得到點(diǎn)C,過點(diǎn)C作x軸的垂線,垂足為F,過點(diǎn)B作y軸的垂線與直線CF相交于點(diǎn)E,點(diǎn)D是點(diǎn)A關(guān)于直線CF的對(duì)稱點(diǎn),連結(jié)AC,BC,CD,設(shè)點(diǎn)A的橫坐標(biāo)為t.
(1)當(dāng)t=2時(shí),求CF的長;
(2)①當(dāng)t為何值時(shí),點(diǎn)C落在線段BD上;
     ②設(shè)△BCE的面積為S,求S與t之間的函數(shù)關(guān)系式;
(3)如圖2,當(dāng)點(diǎn)C與點(diǎn)E重合時(shí),將△CDF沿x軸左右平移得到△C′D′F′,再將A,B,C′,D′為頂點(diǎn)的四邊形沿C′F′剪開,得到兩個(gè)圖形,用這兩個(gè)圖形拼成不重疊且無縫隙的圖形恰好是三角形.請(qǐng)直接寫出所有符合上述條件的點(diǎn)C′的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案