【題目】在等腰△ABC中,
(1)如圖1,若△ABC為等邊三角形,D為線段BC中點,線段AD關于直線AB的對稱線段為線段AE,連接DE,則∠BDE的度數(shù)為___________;
(2)若△ABC為等邊三角形,點D為線段BC上一動點(不與B,C重合),連接AD并將線段AD繞點D逆時針旋轉60°得到線段DE,連接BE.
①根據(jù)題意在圖2中補全圖形;
②小玉通過觀察、驗證,提出猜測:在點D運動的過程中,恒有CD=BE.經(jīng)過與同學們的充分討論,形成了幾種證明的思路:
思路1:要證明CD=BE,只需要連接AE,并證明△ADC≌△AEB;
思路2:要證明CD=BE,只需要過點D作DF∥AB,交AC于F,證明△ADF≌△DEB;
思路3:要證明CD=BE,只需要延長CB至點G,使得BG=CD,證明△ADC≌△DEG;
……
請參考以上思路,幫助小玉證明CD=BE.(只需要用一種方法證明即可)
(3)小玉的發(fā)現(xiàn)啟發(fā)了小明:如圖3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此時小明發(fā)現(xiàn)BE,BD,AC三者之間滿足一定的的數(shù)量關系,這個數(shù)量關系是______________________.(直接給出結論無須證明)
【答案】(1)30°;(2)答案見解析;(3)k(BE+BD)=AC
【解析】試題解析:(1)由AD是等邊三角形ABC的BC邊上的中線得AD⊥BC,由AE與AD關于AB對稱,從而AB垂直平分DE,可得∠ADE=60°,所以∠BDE=30°;
(2)①根據(jù)題意畫圖即可;
②如思路1,證明△EAB≌△DAC即可得出結論.
(3)k(BE+BD)=AC.
試題解析:(1)∵ΔABC是等邊三角形,D是BC邊的中點
∴∠BAD=30°
∵線段AD和AE關于直線AB對稱
∴DE⊥AB
∴∠ADE=60°
∴∠BDE=90°-60°=30°;
(2)作圖如下:
②如圖,連接AE.
(3)k(BE+BD)=AC.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DF交BC于點E.
(1)求證:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】湖北省2018年12月初出現(xiàn)了全省范圍內的強降溫,如果氣溫上升5℃記為+5℃,則-8℃表示( )
A. 下降3℃ B. 上升3℃ C. 下降8℃ D. 上升8℃
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,△ABC與△DEC關于點C成中心對稱,連接AE、BD.
(1)線段AE、BD具有怎樣的位置關系和大小關系?說明你的理由.
(2)如果△ABC的面積為5cm2 , 求四邊形ABDE的面積.
(3)當∠ACB為多少度時,四邊形ABDE為矩形?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將等腰△ABC繞頂點B逆時針方向旋轉α度到△A1B1C1的位置,AB與A1C1相交于點D,AC與A1C1、BC1分別交于點E、F.
(1)求證:△BCF≌△BA1D;
(2)當∠C=α度時,判定四邊形A1BCE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】作圖題:如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.△AOB的三個頂點A,O,B都在格點上.
(1)畫出△AOB關于點O成中心對稱的三角形;
(2)畫出△AOB繞點O逆時針旋轉90后得到的三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某城市自來水收費實行階梯水價,收費標準如下表所示:
(1)某用戶四月份用水量為16噸,需交水費為多少元?
(2)某用戶五月份交水費50元,所用水量為多少噸?
(3)某用戶六月份用水量為a噸,需要交水費為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com