【題目】湖北省2018年12月初出現(xiàn)了全省范圍內(nèi)的強降溫,如果氣溫上升5℃記為+5℃,則-8℃表示( )
A. 下降3℃ B. 上升3℃ C. 下降8℃ D. 上升8℃
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù),其中.
(1)求該二次函數(shù)的對稱軸方程;
(2)過動點C(0, )作直線⊥y軸.
① 當直線與拋物線只有一個公共點時, 求與的函數(shù)關(guān)系;
② 若拋物線與x軸有兩個交點,將拋物線在軸下方的部分沿軸翻折,圖象的其余部分保持不變,得到一個新的圖象. 當=7時,直線與新的圖象恰好有三個公共點,求此時的值;
(3)若對于每一個給定的x的值,它所對應的函數(shù)值都不小于1,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店需要購進甲、乙兩種商品共180件,其進價和售價如表:(注:獲利=售價﹣進價)
甲 | 乙 | |
進價(元/件) | 14 | 35 |
售價(元/件) | 20 | 43 |
(1)若商店計劃銷售完這批商品后能獲利1240元,問甲、乙兩種商品應分別購進多少件?
(2)若商店計劃投入資金少于5040元,且銷售完這批商品后獲利多于1312元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明. 已知:如圖,BE∥CD,∠A=∠1,
求證:∠C=∠E.
證明:∵BE∥CD (已知 )
∴∠2=∠C ()
又∵∠A=∠1 (已知 )
∴AC∥DE ()
∴∠2=∠E ()
∴∠C=∠E (等量代換 )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A、C的坐標分別為(﹣4,4),(﹣1,2).
(1)①請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標系;
②將△ABC向右平移2個單位長度,然后再向下平移3個單位長度,得到△A′B′C′,畫出平移后的△A′B′C′.
(2)寫出點△A′B′C′各個頂點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長CA至點E,使AE=AC;延長CB至點F,使BF=BC.連接AD,AF,DF,EF.延長DB交EF于點N.
(1)求證:AD=AF;
(2)求證:BD=EF;
(3)試判斷四邊形ABNE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等腰△ABC中,
(1)如圖1,若△ABC為等邊三角形,D為線段BC中點,線段AD關(guān)于直線AB的對稱線段為線段AE,連接DE,則∠BDE的度數(shù)為___________;
(2)若△ABC為等邊三角形,點D為線段BC上一動點(不與B,C重合),連接AD并將線段AD繞點D逆時針旋轉(zhuǎn)60°得到線段DE,連接BE.
①根據(jù)題意在圖2中補全圖形;
②小玉通過觀察、驗證,提出猜測:在點D運動的過程中,恒有CD=BE.經(jīng)過與同學們的充分討論,形成了幾種證明的思路:
思路1:要證明CD=BE,只需要連接AE,并證明△ADC≌△AEB;
思路2:要證明CD=BE,只需要過點D作DF∥AB,交AC于F,證明△ADF≌△DEB;
思路3:要證明CD=BE,只需要延長CB至點G,使得BG=CD,證明△ADC≌△DEG;
……
請參考以上思路,幫助小玉證明CD=BE.(只需要用一種方法證明即可)
(3)小玉的發(fā)現(xiàn)啟發(fā)了小明:如圖3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此時小明發(fā)現(xiàn)BE,BD,AC三者之間滿足一定的的數(shù)量關(guān)系,這個數(shù)量關(guān)系是______________________.(直接給出結(jié)論無須證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將△ABC繞O點順時針旋轉(zhuǎn)50°得△A1B1C1(A、B分別對應A1、B1),則直線AB與直線A1B1的夾角(銳角)為( )
A.130°
B.50°
C.40°
D.60°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com