【題目】某醫(yī)院研發(fā)了一種新藥,試驗(yàn)藥效時(shí)發(fā)現(xiàn),如果成人按規(guī)定劑量服用,那么服藥2小時(shí)后,血液中含藥量最高,達(dá)每毫升6微克,接著逐漸衰減,10小時(shí)后血液中含藥量為每毫升3微克,每毫升血液中含藥量y(微克)隨時(shí)間x(小時(shí))的變化如圖所示,當(dāng)成人按規(guī)定劑量服藥后:

(1)服藥后幾小時(shí)血液中含藥量最高?達(dá)到每毫升血液中含藥多少微克?

(2)在服藥幾個(gè)小時(shí)后,血液中的含藥量逐漸升高?在幾小時(shí)后,血液中的含藥量逐漸衰減?

(3)服藥后10小時(shí)時(shí),血液中含藥量是多少微克?

(4)服藥幾小時(shí)后即已無(wú)效?

【答案】(1) 2小時(shí), 6微克;(2)2個(gè)小時(shí); 2小時(shí)后;(3) 3微克;(4) 18小時(shí)后無(wú)效.

【解析】

(1)觀察圖像找出縱坐標(biāo)最大的點(diǎn)即可;

(2)觀察圖像,直線上升則含藥量逐漸升高,直線下降則含藥量逐漸衰減;

(3)觀察圖像即可;

(4)根據(jù)點(diǎn)(2,6)和點(diǎn)(10,3)列出一次函數(shù),再將y0代入即可.

(1)服藥后2小時(shí)血液中含藥量最高,達(dá)到每毫升血液中含藥6微克.

(2)在服藥2個(gè)小時(shí)內(nèi),血液中的含藥量逐漸升高;在2小時(shí)后,血液中的含藥量逐漸衰減.

(3)服藥后10小時(shí)時(shí),血液中含藥量是3微克.

(4)服藥18小時(shí)后無(wú)效.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AD平分∠BAC,要使△ABD≌△ACD,

(1)根據(jù)“SAS”需添加條件________

(2)根據(jù)“ASA”需添加條件________;

(3)根據(jù)“AAS”需添加條件________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】火車(chē)站有某公司待運(yùn)的甲種貨物1530,乙種貨物1150,現(xiàn)計(jì)劃用50節(jié)A,B兩種型號(hào)的車(chē)廂將這批貨物運(yùn)至北京,已知每節(jié)A型車(chē)廂的運(yùn)費(fèi)是0.5萬(wàn)元,每節(jié)B型車(chē)廂的運(yùn)費(fèi)是0.8萬(wàn)元;甲種貨物35噸和乙種貨物15噸可裝滿(mǎn)一節(jié)A型車(chē)廂,甲種貨物25噸和乙種貨物35噸可裝滿(mǎn)一節(jié)B型車(chē)廂,按此要求安排A,B兩種車(chē)廂的節(jié)數(shù),共有哪幾種方案?請(qǐng)你設(shè)計(jì)出所有方案,并說(shuō)明哪種方案的運(yùn)費(fèi)最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某體育用品商場(chǎng)為推銷(xiāo)某一品牌運(yùn)動(dòng)服,先做了市場(chǎng)調(diào)查,得到數(shù)據(jù)如下表:

賣(mài)出價(jià)格x(/)

50

51

52

53

銷(xiāo)售量P()

500

490

480

470

Px的函數(shù)關(guān)系式為________,當(dāng)賣(mài)出價(jià)格為60元時(shí),銷(xiāo)售量為_______件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:請(qǐng)你添加一個(gè)條件_____可以得到

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】湖州素有魚(yú)米之鄉(xiāng)之稱(chēng),某水產(chǎn)養(yǎng)殖大戶(hù)為了更好地發(fā)揮技術(shù)優(yōu)勢(shì),一次性收購(gòu)了 淡水魚(yú),計(jì)劃養(yǎng)殖一段時(shí)間后再出售.已知每天放養(yǎng)的費(fèi)用相同,放養(yǎng) 天的總成本為 萬(wàn)元;放養(yǎng) 天的總成本為 萬(wàn)元(總成本=放養(yǎng)總費(fèi)用+收購(gòu)成本).
(1)設(shè)每天的放養(yǎng)費(fèi)用是 萬(wàn)元,收購(gòu)成本為 萬(wàn)元,求 的值;
(2)設(shè)這批淡水魚(yú)放養(yǎng) 天后的質(zhì)量為 ),銷(xiāo)售單價(jià)為 元/ .根據(jù)以往經(jīng)驗(yàn)可知: 的函數(shù)關(guān)系為 ; 的函數(shù)關(guān)系如圖所示.

①分別求出當(dāng) 時(shí), 的函數(shù)關(guān)系式;
②設(shè)將這批淡水魚(yú)放養(yǎng) 天后一次性出售所得利潤(rùn)為 元,求當(dāng) 為何值時(shí), 最大?并求出最大值.(利潤(rùn)=銷(xiāo)售總額-總成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=﹣ ax2+ ax+3a(a≠0)與x軸交于A和點(diǎn)B(A在左,B在右),與y軸的正半軸交于點(diǎn)C,且OB=OC.

(1)求拋物線的解析式;
(2)若D為OB中點(diǎn),E為CO中點(diǎn),動(dòng)點(diǎn)F在y軸的負(fù)半軸上,G在線段FD的延長(zhǎng)線上,連接GE、ED,若D恰為FG中點(diǎn),且SGDE= ,求點(diǎn)F的坐標(biāo);
(3)在(2)的條件下,動(dòng)點(diǎn)P在線段OB上,動(dòng)點(diǎn)Q在OC的延長(zhǎng)線上,且BP=CQ.連接PQ與BC交于點(diǎn)M,連接GM并延長(zhǎng),GM的延長(zhǎng)線交拋物線于點(diǎn)N,連接QN、GP和GB,若角滿(mǎn)足∠QPG﹣∠NQP=∠NQO﹣∠PGB時(shí),求NP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于二次函數(shù)y=x2﹣2mx﹣3,下列結(jié)論錯(cuò)誤的是(
A.它的圖象與x軸有兩個(gè)交點(diǎn)
B.方程x2﹣2mx=3的兩根之積為﹣3
C.它的圖象的對(duì)稱(chēng)軸在y軸的右側(cè)
D.x<m時(shí),y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線的長(zhǎng)分別為2和5,P是對(duì)角線AC上任一點(diǎn)(點(diǎn)P不與點(diǎn)A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,則陰影部分的面積是( )

A.2
B.
C.3
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案