【題目】如圖,將矩形ABCD置于平面直角坐標(biāo)系中,其中AD邊在x軸上,AB=2,直線MN:y=x﹣4沿x軸的負(fù)方向以每秒1個單位的長度平移,設(shè)在平移過程中該直線被矩形ABCD的邊截得的線段長度為m,平移時(shí)間為t,m與t的函數(shù)圖象如圖2所示.
(1)點(diǎn)A的坐標(biāo)為 ,矩形ABCD的面積為 ;
(2)求a,b的值;
(3)在平移過程中,求直線MN掃過矩形ABCD的面積S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
【答案】(1)(1,0),8 ;(2)a=a=2,b=9;(3)S=.
【解析】
(1)根據(jù)直線解析式求出點(diǎn)N的坐標(biāo),然后根據(jù)函數(shù)圖象可知直線平移3個單位后經(jīng)過點(diǎn)A,從而求的點(diǎn)A的坐標(biāo),由點(diǎn)F的橫坐標(biāo)可求得點(diǎn)D的坐標(biāo),從而可求得AD的長,據(jù)此可求得ABCD的面積;
(2)如圖1所示;當(dāng)直線MN經(jīng)過點(diǎn)B時(shí),直線MN交DA于點(diǎn)E,首先求得點(diǎn)E的坐標(biāo),然后利用勾股定理可求得BE的長,從而得到a的值;如圖2所示,當(dāng)直線MN經(jīng)過點(diǎn)C時(shí),直線MN交x軸于點(diǎn)F,求得直線MN與x軸交點(diǎn)F的坐標(biāo)從而可求得b的值;
(3)當(dāng)0≤t<3時(shí),直線MN與矩形沒有交點(diǎn);當(dāng)3≤t<5時(shí),如圖3所示S=△EFA的面積;當(dāng)5≤t<7時(shí),如圖4所示:S=SBEFG+SABG;當(dāng)7≤t≤9時(shí),如圖5所示.S=SABCD﹣SCEF.
解:(1)令直線y=x﹣4的y=0得:x﹣4=0,解得:x=4,
∴點(diǎn)M的坐標(biāo)為(4,0).
由函數(shù)圖象可知:當(dāng)t=3時(shí),直線MN經(jīng)過點(diǎn)A,
∴點(diǎn)A的坐標(biāo)為(1,0)
沿x軸的負(fù)方向平移3個單位后與矩形ABCD相交于點(diǎn)A,
∵y=x﹣4沿x軸的負(fù)方向平移3個單位后直線的解析式是:y=x+3﹣4=x﹣1,
∴點(diǎn)A的坐標(biāo)為 (1,0);
由函數(shù)圖象可知:當(dāng)t=7時(shí),直線MN經(jīng)過點(diǎn)D,
∴點(diǎn)D的坐標(biāo)為(﹣3,0).
∴AD=4.
∴矩形ABCD的面積=ABAD=4×2=8.
(2)如圖1所示;當(dāng)直線MN經(jīng)過點(diǎn)B時(shí),直線MN交DA于點(diǎn)E.
∵點(diǎn)A的坐標(biāo)為(1,0),
∴點(diǎn)B的坐標(biāo)為(1,2)
設(shè)直線MN的解析式為y=x+c,
將點(diǎn)B的坐標(biāo)代入得;1+c=2.
∴c=1.
∴直線MN的解析式為y=x+1.
將y=0代入得:x+1=0,解得x=﹣1,
∴點(diǎn)E的坐標(biāo)為(﹣1,0).
∴BE=.
∴a=2
如圖2所示,當(dāng)直線MN經(jīng)過點(diǎn)C時(shí),直線MN交x軸于點(diǎn)F.
∵點(diǎn)D的坐標(biāo)為(﹣3,0),
∴點(diǎn)C的坐標(biāo)為(﹣3,2).
設(shè)MN的解析式為y=x+d,將(﹣3,2)代入得:﹣3+d=2,解得d=5.
∴直線MN的解析式為y=x+5.
將y=0代入得x+5=0,解得x=﹣5.
∴點(diǎn)F的坐標(biāo)為(﹣5,0).
∴b=4﹣(﹣5)=9.
(3)當(dāng)0≤t<3時(shí),直線MN與矩形沒有交點(diǎn).
∴s=0.
當(dāng)3≤t<5時(shí),如圖3所示;
S=;
當(dāng)5≤t<7時(shí),如圖4所示:過點(diǎn)B作BG∥MN.
由(2)可知點(diǎn)G的坐標(biāo)為(﹣1,0).
∴FG=t﹣5.
∴S=SBEFG+SABG=2(t﹣5)+=2t﹣8.
當(dāng)7≤t≤9時(shí),如圖5所示.
FD=t﹣7,CF=2﹣DF=2﹣(t﹣7)=9﹣t.
S=SABCD﹣SCEF=.
綜上所述,S與t的函數(shù)關(guān)系式為S=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為豐富居民業(yè)余生活,某居民區(qū)組建籌委會,該籌委會動員居民自愿集資建立一個書刊閱覽室.經(jīng)預(yù)算,一共需要籌資30 000元,其中一部分用于購買書桌、書架等設(shè)施,另一部分用于購買書刊.
(1)籌委會計(jì)劃,購買書刊的資金不少于購買書桌、書架等設(shè)施資金的3倍,問最多用多少資金購買書桌、書架等設(shè)施?
(2)經(jīng)初步統(tǒng)計(jì),有200戶居民自愿參與集資,那么平均每戶需集資150元.鎮(zhèn)政府了解情況后,贈送了一批閱覽室設(shè)施和書籍,這樣,只需參與戶共集資20 000元.經(jīng)籌委會進(jìn)一步宣傳,自愿參與的戶數(shù)在200戶的基礎(chǔ)上增加了a%(其中).則每戶平均集資的資金在150元的基礎(chǔ)上減少了%,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)企業(yè)生產(chǎn)部有技術(shù)工人15人,生產(chǎn)部為了合理制定產(chǎn)品的每月生產(chǎn)定額,統(tǒng)計(jì)了這15人某月的加工零件個數(shù).(如下表)
每人加工零件數(shù) | 54 | 45 | 30 | 24 | 21 | 12 |
人 數(shù) | 1 | 1 | 2 | 6 | 3 | 2 |
(1)寫出這15人該月加工零件數(shù)的平均數(shù)、中位數(shù)和眾數(shù);
(2)假設(shè)生產(chǎn)部負(fù)責(zé)人把每位工人的月加工零件數(shù)定為24件,你認(rèn)為是否合理?為什么?如果不合理,請你設(shè)計(jì)一個較為合理的生產(chǎn)定額,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E,F在菱形ABCD的對邊上,AE⊥BC.∠1=∠2.
(1)判斷四邊形AECF的形狀,并證明你的結(jié)論.
(2)若AE=4,AF=2,試求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 “賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
請結(jié)合圖表完成下列各題:
(1)①表中a的值為 ,中位數(shù)在第 組;
②頻數(shù)分布直方圖補(bǔ)充完整;
(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
(3)第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對抗練習(xí),且4名男同學(xué)每組分兩人,求小明與小強(qiáng)兩名男同學(xué)能分在同一組的概率.
組別 | 成績x分 | 頻數(shù)(人數(shù)) |
第1組 | 50≤x<60 | 6 |
第2組 | 60≤x<70 | 8 |
第3組 | 70≤x<80 | 14 |
第4組 | 80≤x<90 | a |
第5組 | 90≤x<100 | 10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時(shí),它是菱形 B. 當(dāng)AC⊥BD時(shí),它是菱形
C. 當(dāng)∠ABC=90°時(shí),它是矩形 D. 當(dāng)AC=BD時(shí),它是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線y=-x+1與拋物線y=ax2+bx+c(a≠0)相交于點(diǎn)A(1,0)和點(diǎn)D(-4,5),并與y軸交于點(diǎn)C,拋物線的對稱軸為直線x=-1,且拋物線與x軸交于另一點(diǎn)B.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)E是直線下方拋物線上的一個動點(diǎn),求出△ACE面積的最大值;
(3)如圖2,若點(diǎn)M是直線x=-1的一點(diǎn),點(diǎn)N在拋物線上,以點(diǎn)A,D,M,N為頂點(diǎn)的四邊形能否成為平行四邊形?若能,請直接寫出點(diǎn)M的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在數(shù)學(xué)活動課上,將邊長為和3的兩個正方形放置在直線l上,如圖a,他連接AD、CF,經(jīng)測量發(fā)現(xiàn)AD=CF.
(1)他將正方形ODEF繞O點(diǎn)逆時(shí)針針旋轉(zhuǎn)一定的角度,如圖b,試判斷AD與CF還相等嗎?說明理由.
(2)他將正方形ODEF繞O點(diǎn)逆時(shí)針旋轉(zhuǎn),使點(diǎn)E旋轉(zhuǎn)至直線l上,如圖c,請求出CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市公交公司為應(yīng)對春運(yùn)期間的人流高峰,計(jì)劃購買A、B兩種型號的公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車3輛,共需650萬元,
(1)試問該公交公司計(jì)劃購買A型和B型公交車每輛各需多少萬元?
(2)若該公司預(yù)計(jì)在某條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費(fèi)用W不超過1200萬元,且確保這10輛公交車在某條線路的年均載客量總和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案的總費(fèi)用W最少?最少總費(fèi)用是多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com