如圖,正方形ABCD的邊長(zhǎng)為1,當(dāng)點(diǎn)E在邊BC上運(yùn)動(dòng)時(shí)(不與正方形的頂點(diǎn)重合),連接AE,過(guò)點(diǎn)E作EF⊥AE交CD于點(diǎn)F.設(shè)BE=x,CF=y,求下列問(wèn)題:
(1)證明△ABE△ECF;
(2)求出y關(guān)于x的函數(shù)關(guān)系式;
(3)試求當(dāng)x取何值時(shí)?y有最大或最小值,是多少?
(1)證明:∵正方形ABCD,
∴∠B=∠C,∠BAE+∠BEA=90°,
∵EF⊥AE,
∴∠BEA+∠CEF=90°,
∴∠BAE=∠CEF,
∴△ABE△ECF.

(2)∵△ABE△ECF,
AB
CE
=
BE
CF

∵BE=x,CF=y,正方形ABCD的邊長(zhǎng)為1,
則CE=1-x,
1
1-x
=
x
y
,
∴y=-x2+x.

(3)由(2)得y=-x2+x,
y=-(x-
1
2
)
2
+
1
4
,
∴可知拋物線的頂點(diǎn)為(
1
2
,
1
4
),開(kāi)口向下,
∴x=
1
2
時(shí),y最大=
1
4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

“假日旅樂(lè)園”中一種新型水上滑梯如圖,其中線段PA表示距離水面(x軸)高度為5m的平臺(tái)(點(diǎn)P在y軸上).滑道AB可以看作反比例函數(shù)圖象的一部分,滑道BCD可以看作是二次函數(shù)圖象的一部分,兩滑道的連接點(diǎn)B為拋物線BCD的頂點(diǎn),且點(diǎn)B到水面的距離BE=2m,點(diǎn)B到y(tǒng)軸的距離是5m.當(dāng)小明從上而下滑到點(diǎn)C時(shí),與水面的距離CG=
3
2
m,與點(diǎn)B的水平距離CF=2m.
(1)求反比例函數(shù)的解析式及其自變量的取值范圍.
(2)求二次函數(shù)的解析式及其自變量的取值范圍.
(3)小明從點(diǎn)B滑水面上點(diǎn)D處時(shí),試求他所滑過(guò)的水平距離d.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線經(jīng)過(guò)A(-1,0),B(0,-2),C(1,-2),且與x軸的另一個(gè)交點(diǎn)為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點(diǎn)D的坐標(biāo)和對(duì)稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(0,4)、B(2,4),它的最高點(diǎn)縱坐標(biāo)為
14
3
,點(diǎn)P是第一象限拋物線上一點(diǎn)且PA=PO,過(guò)點(diǎn)P的直線分別交射線AB、x正半軸于C、D.設(shè)AC=m,OD=n.
(1)求此拋物線的解析式;
(2)求點(diǎn)P的坐標(biāo)及n關(guān)于m的函數(shù)關(guān)系式;
(3)連接OC交AP于點(diǎn)E,如果以A、C、E為頂點(diǎn)的三角形與△ODP相似,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若拋物線y=x2-(2m+4)+m2-10與x軸交于A(x1,0),B(x2,0).頂點(diǎn)為C.
(1)求m的范圍;
(2)若AB=2
2
,求拋物線的解析式;
(3)若△ABC為等邊三角形,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2-bx-c的圖象與x軸交于A、B兩點(diǎn),當(dāng)時(shí)x=1,二次函數(shù)取得最大值4,且|OA|=-
1
n
+2,
(1)求二次函數(shù)的解析式.
(2)已知點(diǎn)P在二次函數(shù)的圖象上,且有S△PAB=8,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx經(jīng)過(guò)圓點(diǎn)O和x軸上的另一點(diǎn)A,它的對(duì)稱軸x=2與x軸交于點(diǎn)C,直線y=-2x-1與拋物線y=a2+bx交于點(diǎn)B(-2,m),且y軸、直線x=2分別交于點(diǎn)D、E.
(1)求m的值及該拋物線對(duì)應(yīng)的函數(shù)解析式;
(2)試判斷△ECB的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線y=-
4
3
x+4與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A、C和點(diǎn)B(-1,0).
(1)求該二次函數(shù)的關(guān)系式;
(2)設(shè)該二次函數(shù)的圖象的頂點(diǎn)為M,求四邊形AOCM的面積;
(3)有兩動(dòng)點(diǎn)D、E同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)D以每秒
3
2
個(gè)單位長(zhǎng)度的速度沿折線OAC按O?A?C的路線運(yùn)動(dòng),點(diǎn)E以每秒4個(gè)單位長(zhǎng)度的速度沿折線OCA按O?C?A的路線運(yùn)動(dòng),當(dāng)D、E兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng).設(shè)D、E同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△ODE的面積為S.
①請(qǐng)問(wèn)D、E兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,是否存在DEOC,若存在,請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;
②請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
③設(shè)S0是②中函數(shù)S的最大值,那么S0=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,當(dāng)x=2時(shí),拋物線y=ax2+bx+c取得最小值-1,并且與y軸交于點(diǎn)C(0,3),與x軸交于點(diǎn)A,B(A在B的右邊).
(1)求拋物線的解析式.
(2)D是線段AC的中點(diǎn),E為線段AC上的一動(dòng)點(diǎn)(不與A,C重合),過(guò)點(diǎn)E作y軸的平行線EF與拋物線交于點(diǎn)F.問(wèn):是否存在△DEF與△AOC相似?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得△APD為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)p的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案