如圖,直線y=-
4
3
x+4與x軸交于點A,與y軸交于點C,已知二次函數(shù)的圖象經(jīng)過點A、C和點B(-1,0).
(1)求該二次函數(shù)的關(guān)系式;
(2)設(shè)該二次函數(shù)的圖象的頂點為M,求四邊形AOCM的面積;
(3)有兩動點D、E同時從點O出發(fā),其中點D以每秒
3
2
個單位長度的速度沿折線OAC按O?A?C的路線運動,點E以每秒4個單位長度的速度沿折線OCA按O?C?A的路線運動,當D、E兩點相遇時,它們都停止運動.設(shè)D、E同時從點O出發(fā)t秒時,△ODE的面積為S.
①請問D、E兩點在運動過程中,是否存在DEOC,若存在,請求出此時t的值;若不存在,請說明理由;
②請求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
③設(shè)S0是②中函數(shù)S的最大值,那么S0=______.
(1)令y=0,則x=3,
∴A(3,0),C(0,4),
∵二次函數(shù)的圖象過點C(0,4),
∴可設(shè)二次函數(shù)的關(guān)系式為y=ax2+bx+4.
又∵該函數(shù)圖象過點A(3,0),B(-1,0),
0=9a+3b+4
0=a-b+4

解得a=-
4
3
,b=
8
3

∴所求二次函數(shù)的關(guān)系式為y=-
4
3
x2+
8
3
x+4.

(2)∵y=-
4
3
x2+
8
3
x+4
=-
4
3
(x-1)2+
16
3

∴頂點M的坐標為(1,
16
3

過點M作MF⊥x軸于F
∴S四邊形AOCM=S△AFM+S梯形FOCM
=
1
2
×(3-1)×
16
3
+
1
2
×(4+
16
3
)×1
=10
∴四邊形AOCM的面積為10.

(3)①不存在DEOC
∵若DEOC,則點D,E應(yīng)分別在線段OA,CA上,此時1<t<2,在Rt△AOC中,AC=5.
設(shè)點E的坐標為(x1,y1
|x1|
3
=
4t-4
5
,
|x1|=
12t-12
5

∵DEOC,
12t-12
5
=
3
2
t

t=
8
3

∵t=
8
3
>2,不滿足1<t<2.
∴不存在DEOC.
②根據(jù)題意得D,E兩點相遇的時間為
3+4+5
3
2
+4
=
24
11
(秒)
現(xiàn)分情況討論如下:
(ⅰ)當0<t≤1時,S=
1
2
×
3
2
t•4t=3t2;
(ⅱ)當1<t≤2時,設(shè)點E的坐標為(x2,y2
|y2|
4
=
5-(4t-4)
5
,
|y2|=
36-16t
5

∴S=
1
2
×
3
2
36-16t
5
=-
12
5
t2+
27
5
t;
(ⅲ)當2<t<
24
11
時,
設(shè)點E的坐標為(x3,y3),類似ⅱ可得|y3|=
36-16t
5

設(shè)點D的坐標為(x4,y4
|y4|
4
=
3
2
t-3
5

|y4|=
6t-12
5

∴S=S△AOE-S△AOD
=
1
2
×3×
36-16t
5
-
1
2
×3×
6t-12
5

=-
33
5
t+
72
5

③當0<t≤1時,S=
1
2
×
3
2
t•4t=3t2,函數(shù)的最大值是3;
當1<t≤2時,S=-
12
5
t2+
27
5
t.函數(shù)的最大值是:
243
80
,
當2<t<
24
11
時,S=-
33
5
t+
72
5
,0<S<
6
5

∴S0=
243
80
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面直角坐標系xOy,一次函數(shù)y=
3
4
x+3
的圖象與y軸交于點A,點M在正比例函數(shù)y=
3
2
x的
圖象上,且MO=MA.二次函數(shù)y=x2+bx+c的圖象經(jīng)過點A,M.求這個二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一只排球從P點打過球網(wǎng)MN,已知該排球飛行距離x(米)與其距地面高度y(米)之間的關(guān)系式為y=-
1
12
x2+
2
3
x+
3
2
(如圖).已知球網(wǎng)MN距原點5米,運動員(用線段AB表示)準備跳起扣球.已知該運動員扣球的最大高度為
9
4
米,設(shè)他扣球的起跳點A的橫坐標為k,因球的高度高于他扣球的最大高度而導(dǎo)致扣球失敗,則k的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線的頂點坐標是(
5
2
,-
9
8
)
,且經(jīng)過點A(8,14).
(1)求該拋物線的解析式;
(2)設(shè)該拋物線與y軸相交于點B,與x軸相交于C、D兩點(點C在點D的左邊),試求點B、C、D的坐標;
(3)設(shè)點P是x軸上的任意一點,分別連接AC、BC.試判斷:PA+PB與AC+BC的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖,在平面直角坐標系中,以BC為直徑的⊙M交x軸正半軸于點A、B,交y軸正半軸于點E、F,過點C作CD垂直y軸,垂足為點D,連接AM并延長交⊙M于點P,連接PE.
(1)求證:∠FAO=∠EAM;
(2)若二次函數(shù)y=-x2+px+q的圖象經(jīng)過點B、C、E,且以C為頂點,當點B的橫坐標等于2時,四邊形OECB的面積是
11
4
,求這個二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,點P由C點出發(fā)以1cm/s向A勻速運動,同時點Q從B點出發(fā)以2cm/s向C點勻速移動,已知AC=4cm,BC=12cm,
(1)若記Q點的移動時間為t,試用含有t的代數(shù)式表示Rt△PCQ與四邊形PQBA的面積;
(2)當P、Q處在什么位置時,四邊形PQBA的面積最小,并求最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,水平地面的A、B兩點處有兩棵筆直的大樹相距2米,小明的父親在這兩棵樹間拴了一根繩子,給他做了一個簡易的秋千.拴繩子的地方距地面高都是2.5米,繩子自然下垂呈拋物線狀,身高1米的小明距較近的那棵樹0.5米時,頭部剛好接觸到繩子.
(1)請完成如下操作:以AB所在直線為x軸、線段AB的垂直平分線為y軸,建立平面直角坐標系,根據(jù)題中提供的信息,求繩子所在拋物線的函數(shù)關(guān)系式;
(2)求繩子的最低點離地面的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標系xOy中,拋物線y1=2x2+
1
4
的頂點為M,直線y2=x,點P(n,0)為x軸上的一個動點,過點P作x軸的垂線分別交拋物線y1=2x2+
1
4
和直線y2=x于點A,點B.
(1)直接寫出A,B兩點的坐標(用含n的代數(shù)式表示);
(2)設(shè)線段AB的長為d,求d關(guān)于n的函數(shù)關(guān)系式及d的最小值,并直接寫出此時線段OB與線段PM的位置關(guān)系和數(shù)量關(guān)系;
(3)已知二次函數(shù)y=ax2+bx+c(a,b,c為整數(shù)且a≠0),對一切實數(shù)x恒有x≤y≤2x2+
1
4
,求a,b,c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長為1,當點E在邊BC上運動時(不與正方形的頂點重合),連接AE,過點E作EF⊥AE交CD于點F.設(shè)BE=x,CF=y,求下列問題:
(1)證明△ABE△ECF;
(2)求出y關(guān)于x的函數(shù)關(guān)系式;
(3)試求當x取何值時?y有最大或最小值,是多少?

查看答案和解析>>

同步練習(xí)冊答案