【題目】綜合與探究:

如圖1,拋物線y=﹣x2+x+與x軸分別交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C點(diǎn).經(jīng)過(guò)點(diǎn)A的直線l與y軸交于點(diǎn)D(0,﹣).

(1)求A、B兩點(diǎn)的坐標(biāo)及直線l的表達(dá)式;

(2)如圖2,直線l從圖中的位置出發(fā),以每秒1個(gè)單位的速度沿x軸的正方向運(yùn)動(dòng),運(yùn)動(dòng)中直線l與x軸交于點(diǎn)E,與y軸交于點(diǎn)F,點(diǎn)A 關(guān)于直線l的對(duì)稱點(diǎn)為A′,連接FA′、BA′,設(shè)直線l的運(yùn)動(dòng)時(shí)間為t(t0)秒.探究下列問(wèn)題:

請(qǐng)直接寫(xiě)出A′的坐標(biāo)(用含字母t的式子表示);

當(dāng)點(diǎn)A′落在拋物線上時(shí),求直線l的運(yùn)動(dòng)時(shí)間t的值,判斷此時(shí)四邊形A′BEF的形狀,并說(shuō)明理由;

(3)在(2)的條件下,探究:在直線l的運(yùn)動(dòng)過(guò)程中,坐標(biāo)平面內(nèi)是否存在點(diǎn)P,使得以P,A′,B,E為頂點(diǎn)的四邊形為矩形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo); 若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)y=﹣x﹣(2)見(jiàn)解析(3)存在

【解析】

(1)通過(guò)解方程﹣x2+x+=0A(1,0),B(3,0),然后利用待定系數(shù)法確定直線l的解析式;

(2)①作A′Hx軸于H,如圖2,利用OA=1,OD=得到∠OAD=60°,再利用平移和對(duì)稱的性質(zhì)得到EA=EA′=t,A′EF=AEF=60°,然后根據(jù)含30度的直角三角形三邊的關(guān)系表示出A′H,EH即可得到A′的坐標(biāo);

②把A′(t1,t)代入y=x2x+t1)2t1)+t,解方程得到t=2,此時(shí)A′點(diǎn)的坐標(biāo)為(2,),E(1,0),然后通過(guò)計(jì)算得到AF=BE=2,A′FBE,從而判斷四邊形A′BEF為平行四邊形,然后加上EF=BE可判定四邊形A′BEF為菱形;

(3)討論:當(dāng)A′BBE時(shí),四邊形A′BEP為矩形,利用點(diǎn)A′和點(diǎn)B的橫坐標(biāo)相同得到t1=3,解方程求出t得到A′(3,),再利用矩形的性質(zhì)可寫(xiě)出對(duì)應(yīng)的P點(diǎn)坐標(biāo);當(dāng)A′BEA′,如圖4,四邊形A′BPE為矩形,作A′Qx軸于Q,先確定此時(shí)A′點(diǎn)的坐標(biāo),然后利用點(diǎn)的平移確定對(duì)應(yīng)P點(diǎn)坐標(biāo).

(1)當(dāng)y=0時(shí),x2+x+=0,解得x1=﹣1,x2=3,則A(﹣1,0),B(3,0),

設(shè)直線l的解析式為y=kx+b,

A(﹣1,0),D(0,﹣)代入得,解得,

∴直線l的解析式為y=﹣x﹣

(2)①作A′Hx軸于H,如圖,

OA=1,OD=,

∴∠OAD=60°,

EFAD,

∴∠AEF=60°,

∵點(diǎn)A 關(guān)于直線l的對(duì)稱點(diǎn)為A′,

EA=EA′=t,A′EF=AEF=60°,

RtA′EH中,EH=EA′=t,A′H=EH=t,

OH=OE+EH=t﹣1+t=t﹣1,

A′(t﹣1, t);

②把A′(t﹣1, t)代入y=﹣x2+x+得﹣t﹣1)2+t﹣1)+=t,

解得t1=0(舍去),t2=2,

∴當(dāng)點(diǎn)A′落在拋物線上時(shí),直線l的運(yùn)動(dòng)時(shí)間t的值為2;

此時(shí)四邊形A′BEF為菱形,理由如下:

當(dāng)t=2時(shí),A′點(diǎn)的坐標(biāo)為(2,),E(1,0),

∵∠OEF=60°

OF=OE=,EF=2OE=2,

F(0,),

A′Fx軸,

A′F=BE=2,A′FBE,

四邊形A′BEF為平行四邊形,

EF=BE=2,

∴四邊形A′BEF為菱形;

(3)存在,如圖:

當(dāng)A′BBE時(shí),四邊形A′BEP為矩形,則t﹣1=3,解得t=,則A′(3,),

OE=t﹣1=,

∴此時(shí)P點(diǎn)坐標(biāo)為(,);

當(dāng)A′BEA′,如圖,四邊形A′BPE為矩形,作A′Qx軸于Q,

∵∠AEA′=120°,

∴∠A′EB=60°,

∴∠EBA′=30°

BQ=A′Q=t=t,

t﹣1+t=3,解得t=,

此時(shí)A′(1,),E(,0),

點(diǎn)A′向左平移個(gè)單位,向下平移個(gè)單位得到點(diǎn)E,則點(diǎn)B(3,0)向左平移個(gè)單位,向下平移個(gè)單位得到點(diǎn)P,則P(,﹣),

綜上所述,滿足條件的P點(diǎn)坐標(biāo)為(,)或(,﹣).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(知識(shí)生成)我們已經(jīng)知道,通過(guò)計(jì)算幾何圖形的面積可以表示一些代數(shù)恒等式.例如圖1可以得到(a+b2a2+2ab+b2,基于此,請(qǐng)解答下列問(wèn)題:

1)根據(jù)圖2,寫(xiě)出一個(gè)代數(shù)恒等式:   

2)利用(1)中得到的結(jié)論,解決下面的問(wèn)題:若a+b+c10,ab+ac+bc35,則a2+b2+c2   

3)小明同學(xué)用圖3x張邊長(zhǎng)為a的正方形,y張邊長(zhǎng)為b的正方形,z張寬、長(zhǎng)分別為ab的長(zhǎng)方形紙片拼出一個(gè)面積為(2a+b)(a+2b)長(zhǎng)方形,則x+y+z   

(知識(shí)遷移)(4)事實(shí)上,通過(guò)計(jì)算幾何圖形的體積也可以表示一些代數(shù)恒等式,圖4表示的是一個(gè)邊長(zhǎng)為x的正方體挖去一個(gè)小長(zhǎng)方體后重新拼成一個(gè)新長(zhǎng)方體,請(qǐng)你根據(jù)圖4中圖形的變化關(guān)系,寫(xiě)出一個(gè)代數(shù)恒等式:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列二元一次方程組解應(yīng)用題

甲、乙兩件服裝的成本共500元,商店老板為獲取利潤(rùn),將甲服裝按50%的利潤(rùn)定價(jià),乙服裝按40%利潤(rùn)定價(jià),在實(shí)際出售時(shí),應(yīng)顧客要求,兩件服裝均按定價(jià)的9折出售,這樣商店共獲利157元,求若兩件服裝都打8折,商店共可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】魏晉時(shí)期的數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù).為計(jì)算圓周率建立了嚴(yán)密的理論和完善的算法.作圓內(nèi)接正多邊形,當(dāng)正多邊形的邊數(shù)不斷增加時(shí),其周長(zhǎng)就無(wú)限接近圓的周長(zhǎng),進(jìn)而可用來(lái)求得較為精確的圓周率.祖沖之在劉徽的基礎(chǔ)上繼續(xù)努力,當(dāng)正多邊形的邊數(shù)增加24576時(shí),得到了精確到小數(shù)點(diǎn)后七位的圓周率,這一成就在當(dāng)時(shí)是領(lǐng)先其他國(guó)家一千多年,如圖,依據(jù)“割圓術(shù)”,由圓內(nèi)接正六邊形算得的圓周率的近似值是( 。

A. 0.5 B. 1 C. 3 D. π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】科技改變世界.2017年底,快遞分揀機(jī)器人從微博火到了朋友圈,據(jù)介紹,這些機(jī)器人不僅可以自動(dòng)規(guī)劃最優(yōu)路線,將包裹準(zhǔn)確地放入相應(yīng)的格口,還會(huì)感應(yīng)避讓障礙物,自動(dòng)歸隊(duì)取包裹.沒(méi)電的時(shí)候還會(huì)自己找充電樁充電.某快遞公司啟用80臺(tái)A種機(jī)器人、300臺(tái)B種機(jī)器人分揀快遞包裹.A,B兩種機(jī)器人全部投入工作,1小時(shí)共可以分揀1.44萬(wàn)件包裹,若全部A種機(jī)器人工作3小時(shí),全部B種機(jī)器人工作2小時(shí),一共可以分揀3.12萬(wàn)件包裹.

(1)求兩種機(jī)器人每臺(tái)每小時(shí)各分揀多少件包裹;

(2)為了進(jìn)一步提高效率,快遞公司計(jì)劃再購(gòu)進(jìn)A,B兩種機(jī)器人共200臺(tái),若要保證新購(gòu)進(jìn)的這批機(jī)器人每小時(shí)的總分揀量不少于7000件,求最多應(yīng)購(gòu)進(jìn)A種機(jī)器人多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的一個(gè)內(nèi)接三角形,點(diǎn)是劣弧上一點(diǎn)(點(diǎn)不與,重合),設(shè),

當(dāng)時(shí),求的度數(shù);

猜想之間的關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣50),B50),D2,7),連接ADy軸于C點(diǎn).

1)求C點(diǎn)的坐標(biāo);

2)動(dòng)點(diǎn)PB點(diǎn)出發(fā)以每秒1個(gè)單位的速度沿BA方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)QC點(diǎn)出發(fā)也以每秒1個(gè)單位的速度沿y軸正半軸方向運(yùn)動(dòng)(當(dāng)P點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),兩點(diǎn)都停止運(yùn)動(dòng)).設(shè)從出發(fā)起運(yùn)動(dòng)了x秒.

①請(qǐng)用含x的代數(shù)式分別表示P,Q兩點(diǎn)的坐標(biāo);

②當(dāng)x2時(shí),y軸上是否存在一點(diǎn)E,使得AQE的面積與APQ的面積相等?若存在,求E的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng),為了吸引顧客,在白色情人節(jié)當(dāng)天舉辦了商品有獎(jiǎng)酬賓活動(dòng),凡購(gòu)物滿200元者,有兩種獎(jiǎng)勵(lì)方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎(jiǎng)的機(jī)會(huì).已知在搖獎(jiǎng)機(jī)內(nèi)裝有2個(gè)紅球和2個(gè)白球,除顏色外其它都相同,搖獎(jiǎng)?wù)弑仨殢膿u獎(jiǎng)機(jī)內(nèi)一次連續(xù)搖出兩個(gè)球,根據(jù)球的顏色(如表)決定送禮金券的多少.

兩紅

一紅一白

兩白

禮金券(元)

18

24

18

1)請(qǐng)你用列表法(或畫(huà)樹(shù)狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.

2)如果一名顧客當(dāng)天在本店購(gòu)物滿200元,若只考慮獲得最多的禮品券,請(qǐng)你幫助分析選擇哪種方案較為實(shí)惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+2x+c圖象經(jīng)過(guò)點(diǎn)A (1,4)和點(diǎn)C (0,3).

(1)求該二次函數(shù)的解析式;

(2)結(jié)合函數(shù)圖象,直接回答下列問(wèn)題:

當(dāng)﹣1<x<2時(shí),求函數(shù)y的取值范圍:   

當(dāng)y≥3時(shí),求x的取值范圍:   

查看答案和解析>>

同步練習(xí)冊(cè)答案