如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的三角形紙片,點(diǎn)O與原點(diǎn)精英家教網(wǎng)重合,點(diǎn)A在x軸上,點(diǎn)B在y軸上OB=
3
,∠BAO=30°,將Rt△AOB折疊,使OB邊落在AB邊上,點(diǎn)O與點(diǎn)D重合,折痕為BE.
(1)求點(diǎn)E和點(diǎn)D的坐標(biāo);
(2)求經(jīng)過(guò)O、D、A三點(diǎn)的二次函數(shù)解析式;
(3)設(shè)直線BE與(2)中二次函數(shù)圖象的對(duì)稱(chēng)軸交于點(diǎn)F,M為OF中點(diǎn),N為AF中點(diǎn),在x軸上是否存在點(diǎn)P,使△PMN的周長(zhǎng)最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo)和最小值;若不存在,請(qǐng)說(shuō)明理由.
分析:(1)根據(jù)折疊的性質(zhì)知:∠EBA=∠BAO=30°,由此可得∠OBE=30°,在Rt△OBE中,根據(jù)直角三角形的性質(zhì)即可求得OE的長(zhǎng),從而得到點(diǎn)E的坐標(biāo).同理可在Rt△OAB中,得到OA、OB的長(zhǎng),也就得到了A、B的坐標(biāo),由于D是AB的中點(diǎn),根據(jù)A、B的坐標(biāo),即可得到點(diǎn)D的坐標(biāo).
(2)已知了拋物線圖象上的三點(diǎn)坐標(biāo),利用待定系數(shù)法求解即可.
(3)先求出直線BE的解析式,聯(lián)立拋物線的對(duì)稱(chēng)軸放出,即可得到點(diǎn)F的坐標(biāo),進(jìn)而可求出M、N的坐標(biāo);取點(diǎn)M關(guān)于x軸的對(duì)稱(chēng)點(diǎn)M′,M′的坐標(biāo)易求得,即可得到直線M′N(xiāo)的解析式,那么直線M′N(xiāo)和x軸的交點(diǎn)即為所求的P點(diǎn),求出P點(diǎn)后,即可得到PM、PN的值,而MN的長(zhǎng)為OA的一半,即可得到△PMN的最小周長(zhǎng).
解答:精英家教網(wǎng)解:(1)據(jù)題意可得∠1=
1
2
∠ABO
,OB=BD=
3
,DE=OE,
∵Rt△AOB中,∠BAO=30°,
∴∠ABO=60°,OA=3,AB=2
3
,
∴∠1=30°,A(3,0),B(0,
3
).
Rt△EOB中,∵tan∠1=
OE
OB

OE
3
=
3
3

∴OE=1,∴E點(diǎn)坐標(biāo)為(1,0);
過(guò)點(diǎn)D作DG⊥OA于G,易知D是AB的中點(diǎn),且A(3,0),B(0,
3
),
則OG=
1
2
OA=1.5,DG=
1
2
OB=
3
2
;
故D(1.5,
3
2
).

(2)∵二次函數(shù)的圖象經(jīng)過(guò)x軸上的O、A兩點(diǎn),設(shè)二次函數(shù)的解析式為y=a(x-x1)(x-x2);
據(jù)(1)得A點(diǎn)坐標(biāo)為(3,0),
∴x1=0,x2=3,
把D點(diǎn)坐標(biāo)(1.5,
3
2
)代入y=a(x-0)(x-3)
a=-
2
3
9

∴二次函數(shù)的解析式為y=-
2
3
9
x2+
2
3
3
x


(3)設(shè)直線BE的解析式為y=k1x+b1,把(0,
3
)和(1,0)分別代入y=k1x+b1
得:
k1=-
3
b1=
3
,
直線BE的解析式為y=-
3
x+
3

∵把x=1.5代入y=-
3
x+
3
得:y=-
3
2
,
F點(diǎn)坐標(biāo)為(1.5,-
3
2
),M點(diǎn)坐標(biāo)為(
3
4
,-
3
4
),N點(diǎn)坐標(biāo)為(
9
4
,-
3
4
),
M點(diǎn)關(guān)于x軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為M'(
3
4
3
4
),
設(shè)直線M'N的解析式為y=k2x+b2,把(
3
4
,
3
4
)和(
9
4
,-
3
4
)分別代入y=k2x+b2
得:k2=-
3
3
,b2=
3
2
,
∴直線M'N的解析式為y=-
3
3
x+
3
2
,
把y=0代入y=-
3
3
x+
3
2

x=
3
2

∴x軸上存在點(diǎn)P,使△PMN的周長(zhǎng)最小,P點(diǎn)坐標(biāo)為(
3
2
,0),PM=
(
3
2
-
3
4
)
2
+(0-
3
4
)
2
=
3
2
,PN=
(
3
2
-
9
4
)
2
+(0-
3
4
)
2
=
3
2
,
∴△PMN周長(zhǎng)=
3
2
+
3
2
+
3
2
=
3
2
+
3
點(diǎn)評(píng):此題主要考查了直角三角形的性質(zhì)、二次函數(shù)解析式的確定、三角形中位線定理、平面展開(kāi)-最短路徑問(wèn)題等知識(shí),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的直角三角形紙片,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在x軸上,點(diǎn)B在y軸上,OB=
3
,∠BAO=30度.將Rt△AOB折疊,使BO邊落在BA邊上,點(diǎn)O與點(diǎn)D重合,折痕為BC.
(1)求直線BC的解析式;
(2)求經(jīng)過(guò)B,C,A三點(diǎn)的拋物線y=ax2+bx+c的解析式;若拋物線的頂點(diǎn)為M,試判斷點(diǎn)M是否在直線BC上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的三角形紙片,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在x軸正半軸上,點(diǎn)B在y軸正半軸上,OB=2
3
,∠OAB=30°,將Rt△AOB折疊,使OB邊落在AB邊上,點(diǎn)O與點(diǎn)D重合,折精英家教網(wǎng)痕為BE.
(1)求點(diǎn)E和點(diǎn)D的坐標(biāo);
(2)求經(jīng)過(guò)O、D、A三點(diǎn)的二次函數(shù)圖象的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的三角形紙片,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在x軸正半軸上,點(diǎn)B在y軸正半軸上,數(shù)學(xué)公式,∠OAB=30°,將Rt△AOB折疊,使OB邊落在AB邊上,點(diǎn)O與點(diǎn)D重合,折痕為BE.
(1)求點(diǎn)E和點(diǎn)D的坐標(biāo);
(2)求經(jīng)過(guò)O、D、A三點(diǎn)的二次函數(shù)圖象的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:山東省中考真題 題型:解答題

如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的直角三角形紙片,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在x軸上,點(diǎn)B在y軸上,OB=,∠BAO=30度,將Rt△AOB折疊,使BO邊落在BA邊上,點(diǎn)O與點(diǎn)D重合,折痕為BC。

(1)求直線BC的解析式;
(2)求經(jīng)過(guò)B,C,A三點(diǎn)的拋物線y=ax2+bx+c的解析式;若拋物線的頂點(diǎn)為M,試判斷點(diǎn)M是否在直線BC上,并說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案